L10n84

From Knot Atlas
Jump to: navigation, search

L10n83.gif

L10n83

L10n85.gif

L10n85

Contents

L10n84.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n84 at Knotilus!

Link L10n84.
A graph, L10n84.
A part of a link and a part of a graph.

Link Presentations

[edit Notes on L10n84's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X13,20,14,15 X7,16,8,17 X15,8,16,9 X11,18,12,19 X19,12,20,13 X17,14,18,5 X2536 X4,9,1,10
Gauss code {1, -9, 2, -10}, {-5, 4, -8, 6, -7, 3}, {9, -1, -4, 5, 10, -2, -6, 7, -3, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n84 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(w-1) \left(u v^2 w^2+u v^2 w+u v+v w^3+w^2+w\right)}{\sqrt{u} v w^2} (db)
Jones polynomial  q^{-12} - q^{-11} +2 q^{-10} - q^{-9} +2 q^{-8} - q^{-7} + q^{-6} + q^{-3} (db)
Signature -4 (db)
HOMFLY-PT polynomial a^{12} z^{-2} +a^{12}-2 z^2 a^{10}-2 a^{10} z^{-2} -4 a^{10}-z^2 a^8+a^8 z^{-2} +z^6 a^6+6 z^4 a^6+9 z^2 a^6+3 a^6 (db)
Kauffman polynomial a^{14} z^6-5 a^{14} z^4+6 a^{14} z^2-2 a^{14}+a^{13} z^7-4 a^{13} z^5+2 a^{13} z^3+a^{13} z+a^{12} z^8-5 a^{12} z^6+7 a^{12} z^4-6 a^{12} z^2-a^{12} z^{-2} +4 a^{12}+2 a^{11} z^7-11 a^{11} z^5+17 a^{11} z^3-10 a^{11} z+2 a^{11} z^{-1} +a^{10} z^8-7 a^{10} z^6+17 a^{10} z^4-20 a^{10} z^2-2 a^{10} z^{-2} +10 a^{10}+a^9 z^7-7 a^9 z^5+14 a^9 z^3-10 a^9 z+2 a^9 z^{-1} -a^8 z^4+a^8 z^2-a^8 z^{-2} +2 a^8-a^7 z^3+a^7 z+a^6 z^6-6 a^6 z^4+9 a^6 z^2-3 a^6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-5          11
-7          11
-9       11  0
-11      1    1
-13     231   0
-15    1      1
-17   131     1
-19  111      1
-21  1        1
-2311         0
-251          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-7 i=-5 i=-3
r=-10 {\mathbb Z} {\mathbb Z}
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z} {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{3} {\mathbb Z}
r=-3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n83.gif

L10n83

L10n85.gif

L10n85