L10n96

From Knot Atlas
Jump to: navigation, search

L10n95.gif

L10n95

L10n97.gif

L10n97

Contents

L10n96.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n96 at Knotilus!


Link Presentations

[edit Notes on L10n96's Link Presentations]

Planar diagram presentation X6172 X2536 X13,15,14,20 X3,11,4,10 X9,1,10,4 X7,17,8,16 X15,5,16,8 X11,19,12,18 X19,13,20,12 X17,9,18,14
Gauss code {1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -8, 9, -3, 10}, {-7, 6, -10, 8, -9, 3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n96 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-u v w^2 x-u v w x^2+2 u v w x-u v w-u v x+u v+u w x^2-u w x+u x+v w^2 x-v w x+v w+w^2 x^2-w^2 x-w x^2+2 w x-w-x}{\sqrt{u} \sqrt{v} w x} (db)
Jones polynomial -q^{19/2}+2 q^{17/2}-5 q^{15/2}+5 q^{13/2}-8 q^{11/2}+6 q^{9/2}-7 q^{7/2}+3 q^{5/2}-3 q^{3/2} (db)
Signature 3 (db)
HOMFLY-PT polynomial -2 z^5 a^{-5} +3 z^3 a^{-3} -9 z^3 a^{-5} +3 z^3 a^{-7} +8 z a^{-3} -16 z a^{-5} +9 z a^{-7} -z a^{-9} +5 a^{-3} z^{-1} -12 a^{-5} z^{-1} +9 a^{-7} z^{-1} -2 a^{-9} z^{-1} + a^{-3} z^{-3} -3 a^{-5} z^{-3} +3 a^{-7} z^{-3} - a^{-9} z^{-3} (db)
Kauffman polynomial -z^8 a^{-6} -z^8 a^{-8} -4 z^7 a^{-5} -6 z^7 a^{-7} -2 z^7 a^{-9} -3 z^6 a^{-4} -4 z^6 a^{-6} -3 z^6 a^{-8} -2 z^6 a^{-10} +15 z^5 a^{-5} +18 z^5 a^{-7} +2 z^5 a^{-9} -z^5 a^{-11} +9 z^4 a^{-4} +18 z^4 a^{-6} +13 z^4 a^{-8} +4 z^4 a^{-10} -6 z^3 a^{-3} -31 z^3 a^{-5} -26 z^3 a^{-7} +2 z^3 a^{-9} +3 z^3 a^{-11} -17 z^2 a^{-4} -33 z^2 a^{-6} -16 z^2 a^{-8} +13 z a^{-3} +28 z a^{-5} +21 z a^{-7} +3 z a^{-9} -3 z a^{-11} +13 a^{-4} +24 a^{-6} +11 a^{-8} - a^{-10} -6 a^{-3} z^{-1} -14 a^{-5} z^{-1} -12 a^{-7} z^{-1} -3 a^{-9} z^{-1} + a^{-11} z^{-1} -3 a^{-4} z^{-2} -6 a^{-6} z^{-2} -3 a^{-8} z^{-2} + a^{-3} z^{-3} +3 a^{-5} z^{-3} +3 a^{-7} z^{-3} + a^{-9} z^{-3} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
012345678χ
20        11
18       1 -1
16      41 3
14     44  0
12    41   3
10   35    2
8  43     1
6  4      4
433       0
23        3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=0 {\mathbb Z}^{3} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n95.gif

L10n95

L10n97.gif

L10n97