L11a103

From Knot Atlas
Jump to: navigation, search

L11a102.gif

L11a102

L11a104.gif

L11a104

Contents

L11a103.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a103 at Knotilus!


Link Presentations

[edit Notes on L11a103's Link Presentations]

Planar diagram presentation X6172 X20,7,21,8 X4,21,1,22 X14,6,15,5 X12,4,13,3 X22,14,5,13 X18,9,19,10 X16,11,17,12 X2,16,3,15 X10,17,11,18 X8,19,9,20
Gauss code {1, -9, 5, -3}, {4, -1, 2, -11, 7, -10, 8, -5, 6, -4, 9, -8, 10, -7, 11, -2, 3, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a103 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{3 (t(1)-1) (t(2)-1) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -q^{9/2}+3 q^{7/2}-6 q^{5/2}+7 q^{3/2}-10 \sqrt{q}+\frac{11}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{9}{q^{5/2}}-\frac{7}{q^{7/2}}+\frac{4}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{1}{q^{13/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^5-z a^5+a^5 z^{-1} +z^5 a^3+2 z^3 a^3-2 a^3 z^{-1} +z^5 a+z^3 a+a z^{-1} +z^5 a^{-1} +2 z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} -z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} (db)
Kauffman polynomial -2 a^4 z^{10}-2 a^2 z^{10}-3 a^5 z^9-8 a^3 z^9-5 a z^9-a^6 z^8+7 a^4 z^8+a^2 z^8-7 z^8+17 a^5 z^7+38 a^3 z^7+14 a z^7-7 z^7 a^{-1} +5 a^6 z^6+20 a^2 z^6-7 z^6 a^{-2} +18 z^6-30 a^5 z^5-51 a^3 z^5-5 a z^5+10 z^5 a^{-1} -6 z^5 a^{-3} -7 a^6 z^4-13 a^4 z^4-29 a^2 z^4+8 z^4 a^{-2} -3 z^4 a^{-4} -12 z^4+17 a^5 z^3+15 a^3 z^3-6 a z^3+3 z^3 a^{-1} +6 z^3 a^{-3} -z^3 a^{-5} +3 a^6 z^2+6 a^4 z^2+10 a^2 z^2+7 z^2+a^5 z+7 a^3 z+6 a z-3 z a^{-1} -3 z a^{-3} -a^4-3 a^2- a^{-2} -2-a^5 z^{-1} -2 a^3 z^{-1} -a z^{-1} + a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
10           11
8          2 -2
6         41 3
4        32  -1
2       74   3
0      65    -1
-2     45     -1
-4    56      1
-6   24       -2
-8  25        3
-10 12         -1
-12 2          2
-141           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a102.gif

L11a102

L11a104.gif

L11a104