L11a115

From Knot Atlas
Jump to: navigation, search

L11a114.gif

L11a114

L11a116.gif

L11a116

Contents

L11a115.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a115 at Knotilus!


Link Presentations

[edit Notes on L11a115's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X16,8,17,7 X22,18,5,17 X18,11,19,12 X20,9,21,10 X10,19,11,20 X8,21,9,22 X12,16,13,15 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 3, -8, 6, -7, 5, -9, 11, -2, 9, -3, 4, -5, 7, -6, 8, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a115 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u v^3-7 u v^2+10 u v-4 u-4 v^3+10 v^2-7 v+2}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\frac{11}{q^{9/2}}+\frac{14}{q^{7/2}}+q^{5/2}-\frac{15}{q^{5/2}}-4 q^{3/2}+\frac{13}{q^{3/2}}-\frac{1}{q^{17/2}}+\frac{2}{q^{15/2}}-\frac{5}{q^{13/2}}+\frac{8}{q^{11/2}}+7 \sqrt{q}-\frac{11}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^9 z^{-1} -3 a^7 z-2 a^7 z^{-1} +3 a^5 z^3+3 a^5 z+a^5 z^{-1} -a^3 z^5+a^3 z^{-1} -a z^5-a z^3+z^3 a^{-1} -2 a z-a z^{-1} (db)
Kauffman polynomial a^9 z^7-5 a^9 z^5+8 a^9 z^3-5 a^9 z+a^9 z^{-1} +2 a^8 z^8-8 a^8 z^6+9 a^8 z^4-4 a^8 z^2+a^8+2 a^7 z^9-4 a^7 z^7-7 a^7 z^5+18 a^7 z^3-12 a^7 z+2 a^7 z^{-1} +a^6 z^{10}+3 a^6 z^8-20 a^6 z^6+25 a^6 z^4-12 a^6 z^2+3 a^6+6 a^5 z^9-15 a^5 z^7+4 a^5 z^5+11 a^5 z^3-8 a^5 z+a^5 z^{-1} +a^4 z^{10}+8 a^4 z^8-29 a^4 z^6+30 a^4 z^4-12 a^4 z^2+2 a^4+4 a^3 z^9-2 a^3 z^7-7 a^3 z^5+4 a^3 z^3+2 a^3 z-a^3 z^{-1} +7 a^2 z^8-10 a^2 z^6+6 a^2 z^4+z^4 a^{-2} -4 a^2 z^2+a^2+8 a z^7-9 a z^5+4 z^5 a^{-1} -3 z^3 a^{-1} +3 a z-a z^{-1} +7 z^6-7 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
6           1-1
4          3 3
2         41 -3
0        73  4
-2       75   -2
-4      86    2
-6     67     1
-8    58      -3
-10   47       3
-12  14        -3
-14 14         3
-16 1          -1
-181           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a114.gif

L11a114

L11a116.gif

L11a116