L11a119

From Knot Atlas
Jump to: navigation, search

L11a118.gif

L11a118

L11a120.gif

L11a120

Contents

L11a119.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a119 at Knotilus!


Link Presentations

[edit Notes on L11a119's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X18,8,19,7 X22,20,5,19 X20,11,21,12 X10,21,11,22 X16,10,17,9 X12,16,13,15 X8,18,9,17 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 7, -6, 5, -8, 11, -2, 8, -7, 9, -3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a119 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(v-2) (2 v-1) (u v-2 u-2 v+1)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial q^{9/2}-4 q^{7/2}+7 q^{5/2}-12 q^{3/2}+16 \sqrt{q}-\frac{17}{\sqrt{q}}+\frac{17}{q^{3/2}}-\frac{15}{q^{5/2}}+\frac{10}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 z^{-1} -3 z a^5-a^5 z^{-1} +3 z^3 a^3-a^3 z^{-1} -z^5 a+2 z^3 a+4 z a+2 a z^{-1} -z^5 a^{-1} -z^3 a^{-1} -3 z a^{-1} - a^{-1} z^{-1} +z^3 a^{-3} (db)
Kauffman polynomial -a^2 z^{10}-z^{10}-3 a^3 z^9-7 a z^9-4 z^9 a^{-1} -4 a^4 z^8-9 a^2 z^8-6 z^8 a^{-2} -11 z^8-3 a^5 z^7-a^3 z^7+8 a z^7+2 z^7 a^{-1} -4 z^7 a^{-3} -2 a^6 z^6+5 a^4 z^6+25 a^2 z^6+16 z^6 a^{-2} -z^6 a^{-4} +35 z^6-a^7 z^5+2 a^5 z^5+8 a^3 z^5+10 a z^5+16 z^5 a^{-1} +11 z^5 a^{-3} +3 a^6 z^4-6 a^4 z^4-30 a^2 z^4-12 z^4 a^{-2} +2 z^4 a^{-4} -35 z^4+3 a^7 z^3+3 a^5 z^3-12 a^3 z^3-23 a z^3-18 z^3 a^{-1} -7 z^3 a^{-3} +5 a^4 z^2+16 a^2 z^2+4 z^2 a^{-2} +15 z^2-3 a^7 z-3 a^5 z+7 a^3 z+13 a z+6 z a^{-1} -a^6-2 a^4-3 a^2-1+a^7 z^{-1} +a^5 z^{-1} -a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
10           1-1
8          3 3
6         41 -3
4        83  5
2       84   -4
0      98    1
-2     99     0
-4    68      -2
-6   49       5
-8  26        -4
-10 15         4
-12 1          -1
-141           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a118.gif

L11a118

L11a120.gif

L11a120