From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a123 at Knotilus!

Link Presentations

[edit Notes on L11a123's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X16,12,17,11 X12,16,13,15 X22,17,5,18 X18,7,19,8 X20,9,21,10 X8,19,9,20 X10,21,11,22 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 6, -8, 7, -9, 3, -4, 11, -2, 4, -3, 5, -6, 8, -7, 9, -5}
A Braid Representative
A Morse Link Presentation L11a123 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^5-2 t(2)^5-4 t(1) t(2)^4+4 t(2)^4+4 t(1) t(2)^3-4 t(2)^3-4 t(1) t(2)^2+4 t(2)^2+4 t(1) t(2)-4 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -\frac{1}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{5}{q^{5/2}}+\frac{7}{q^{7/2}}-\frac{11}{q^{9/2}}+\frac{11}{q^{11/2}}-\frac{12}{q^{13/2}}+\frac{10}{q^{15/2}}-\frac{8}{q^{17/2}}+\frac{5}{q^{19/2}}-\frac{2}{q^{21/2}}+\frac{1}{q^{23/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{11} (-z)-2 a^{11} z^{-1} +3 a^9 z^3+9 a^9 z+5 a^9 z^{-1} -3 a^7 z^5-11 a^7 z^3-10 a^7 z-3 a^7 z^{-1} +a^5 z^7+4 a^5 z^5+4 a^5 z^3+a^5 z-a^3 z^5-3 a^3 z^3-a^3 z (db)
Kauffman polynomial -z^4 a^{14}+2 z^2 a^{14}-a^{14}-2 z^5 a^{13}+2 z^3 a^{13}-3 z^6 a^{12}+2 z^4 a^{12}-4 z^7 a^{11}+6 z^5 a^{11}-8 z^3 a^{11}+5 z a^{11}-2 a^{11} z^{-1} -3 z^8 a^{10}+9 z^4 a^{10}-13 z^2 a^{10}+5 a^{10}-2 z^9 a^9-2 z^7 a^9+14 z^5 a^9-20 z^3 a^9+15 z a^9-5 a^9 z^{-1} -z^{10} a^8-2 z^8 a^8+6 z^6 a^8+4 z^4 a^8-9 z^2 a^8+5 a^8-5 z^9 a^7+14 z^7 a^7-8 z^5 a^7-4 z^3 a^7+9 z a^7-3 a^7 z^{-1} -z^{10} a^6-2 z^8 a^6+16 z^6 a^6-17 z^4 a^6+5 z^2 a^6-3 z^9 a^5+11 z^7 a^5-10 z^5 a^5+2 z^3 a^5-3 z^8 a^4+13 z^6 a^4-15 z^4 a^4+3 z^2 a^4-z^7 a^3+4 z^5 a^3-4 z^3 a^3+z a^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
0           11
-2          2 -2
-4         31 2
-6        53  -2
-8       62   4
-10      55    0
-12     76     1
-14    46      2
-16   46       -2
-18  14        3
-20 14         -3
-22 1          1
-241           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.