From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a202 at Knotilus!

Link Presentations

[edit Notes on L11a202's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X6718 X18,11,19,12 X16,6,17,5 X4,18,5,17 X20,13,21,14 X22,15,7,16 X12,19,13,20 X14,21,15,22
Gauss code {1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 5, -10, 8, -11, 9, -6, 7, -5, 10, -8, 11, -9}
A Braid Representative
A Morse Link Presentation L11a202 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1)^2 t(2)^6-t(1) t(2)^6-t(1)^2 t(2)^5+t(1) t(2)^5-t(2)^5+t(1)^2 t(2)^4-t(1) t(2)^4+t(2)^4-t(1)^2 t(2)^3+t(1) t(2)^3-t(2)^3+t(1)^2 t(2)^2-t(1) t(2)^2+t(2)^2-t(1)^2 t(2)+t(1) t(2)-t(2)-t(1)+1}{t(1) t(2)^3} (db)
Jones polynomial -\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{5}{q^{11/2}}+\frac{5}{q^{13/2}}-\frac{5}{q^{15/2}}+\frac{5}{q^{17/2}}-\frac{4}{q^{19/2}}+\frac{3}{q^{21/2}}-\frac{2}{q^{23/2}}+\frac{1}{q^{25/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial -z^7 a^9-6 z^5 a^9-11 z^3 a^9-7 z a^9-2 a^9 z^{-1} +z^9 a^7+8 z^7 a^7+23 z^5 a^7+30 z^3 a^7+19 z a^7+5 a^7 z^{-1} -z^7 a^5-7 z^5 a^5-16 z^3 a^5-13 z a^5-3 a^5 z^{-1} (db)
Kauffman polynomial a^{16} z^2+2 a^{15} z^3+3 a^{14} z^4-2 a^{14} z^2+4 a^{13} z^5-6 a^{13} z^3+5 a^{12} z^6-13 a^{12} z^4+6 a^{12} z^2-a^{12}+5 a^{11} z^7-17 a^{11} z^5+13 a^{11} z^3-3 a^{11} z+4 a^{10} z^8-15 a^{10} z^6+11 a^{10} z^4+a^{10} z^2+3 a^9 z^9-14 a^9 z^7+18 a^9 z^5-9 a^9 z^3+6 a^9 z-2 a^9 z^{-1} +a^8 z^{10}-2 a^8 z^8-11 a^8 z^6+31 a^8 z^4-22 a^8 z^2+5 a^8+4 a^7 z^9-27 a^7 z^7+62 a^7 z^5-59 a^7 z^3+25 a^7 z-5 a^7 z^{-1} +a^6 z^{10}-6 a^6 z^8+9 a^6 z^6+4 a^6 z^4-14 a^6 z^2+5 a^6+a^5 z^9-8 a^5 z^7+23 a^5 z^5-29 a^5 z^3+16 a^5 z-3 a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
-2           11
-4            0
-6         31 2
-8        11  0
-10       42   2
-12      22    0
-14     33     0
-16    22      0
-18   23       -1
-20  12        1
-22 12         -1
-24 1          1
-261           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.