From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a210 at Knotilus!

Link Presentations

[edit Notes on L11a210's Link Presentations]

Planar diagram presentation X8192 X20,9,21,10 X6718 X22,15,7,16 X4,14,5,13 X16,6,17,5 X12,18,13,17 X10,4,11,3 X18,12,19,11 X14,21,15,22 X2,20,3,19
Gauss code {1, -11, 8, -5, 6, -3}, {3, -1, 2, -8, 9, -7, 5, -10, 4, -6, 7, -9, 11, -2, 10, -4}
A Braid Representative
A Morse Link Presentation L11a210 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 t(1)^2 t(2)^4-3 t(1) t(2)^4+t(2)^4-5 t(1)^2 t(2)^3+9 t(1) t(2)^3-4 t(2)^3+6 t(1)^2 t(2)^2-11 t(1) t(2)^2+6 t(2)^2-4 t(1)^2 t(2)+9 t(1) t(2)-5 t(2)+t(1)^2-3 t(1)+2}{t(1) t(2)^2} (db)
Jones polynomial -q^{11/2}+4 q^{9/2}-9 q^{7/2}+14 q^{5/2}-20 q^{3/2}+22 \sqrt{q}-\frac{23}{\sqrt{q}}+\frac{20}{q^{3/2}}-\frac{15}{q^{5/2}}+\frac{9}{q^{7/2}}-\frac{4}{q^{9/2}}+\frac{1}{q^{11/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a z^7+z^7 a^{-1} -a^3 z^5+3 a z^5+3 z^5 a^{-1} -z^5 a^{-3} -2 a^3 z^3+3 a z^3+3 z^3 a^{-1} -2 z^3 a^{-3} -a^3 z+a z+2 z a^{-1} -z a^{-3} + a^{-1} z^{-1} - a^{-3} z^{-1} (db)
Kauffman polynomial -3 z^{10} a^{-2} -3 z^{10}-10 a z^9-16 z^9 a^{-1} -6 z^9 a^{-3} -15 a^2 z^8-5 z^8 a^{-2} -4 z^8 a^{-4} -16 z^8-14 a^3 z^7+8 a z^7+40 z^7 a^{-1} +17 z^7 a^{-3} -z^7 a^{-5} -9 a^4 z^6+24 a^2 z^6+37 z^6 a^{-2} +13 z^6 a^{-4} +57 z^6-4 a^5 z^5+19 a^3 z^5+17 a z^5-20 z^5 a^{-1} -11 z^5 a^{-3} +3 z^5 a^{-5} -a^6 z^4+7 a^4 z^4-11 a^2 z^4-38 z^4 a^{-2} -13 z^4 a^{-4} -44 z^4+a^5 z^3-10 a^3 z^3-15 a z^3-2 z^3 a^{-1} -z^3 a^{-3} -3 z^3 a^{-5} -2 a^4 z^2+2 a^2 z^2+10 z^2 a^{-2} +4 z^2 a^{-4} +10 z^2+2 a^3 z+3 a z+z a^{-5} - a^{-2} + a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
12           11
10          3 -3
8         61 5
6        83  -5
4       126   6
2      119    -2
0     1211     1
-2    912      3
-4   611       -5
-6  39        6
-8 16         -5
-10 3          3
-121           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{12}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.