L11a222

From Knot Atlas
Jump to: navigation, search

L11a221.gif

L11a221

L11a223.gif

L11a223

Contents

L11a222.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a222 at Knotilus!


Link Presentations

[edit Notes on L11a222's Link Presentations]

Planar diagram presentation X8192 X12,4,13,3 X22,10,7,9 X20,12,21,11 X10,22,11,21 X16,6,17,5 X18,16,19,15 X14,20,15,19 X2738 X4,14,5,13 X6,18,1,17
Gauss code {1, -9, 2, -10, 6, -11}, {9, -1, 3, -5, 4, -2, 10, -8, 7, -6, 11, -7, 8, -4, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a222 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{4 t(2)^2 t(1)^2-6 t(2) t(1)^2+2 t(1)^2-6 t(2)^2 t(1)+11 t(2) t(1)-6 t(1)+2 t(2)^2-6 t(2)+4}{t(1) t(2)} (db)
Jones polynomial 15 q^{9/2}-13 q^{7/2}+9 q^{5/2}-6 q^{3/2}+q^{21/2}-3 q^{19/2}+6 q^{17/2}-10 q^{15/2}+13 q^{13/2}-15 q^{11/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^3 a^{-9} +z a^{-9} -z^5 a^{-7} -z^3 a^{-7} -2 z^5 a^{-5} -4 z^3 a^{-5} -2 z a^{-5} -z^5 a^{-3} -z^3 a^{-3} - a^{-3} z^{-1} +z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-6} -z^{10} a^{-8} -2 z^9 a^{-5} -5 z^9 a^{-7} -3 z^9 a^{-9} -3 z^8 a^{-4} -3 z^8 a^{-6} -4 z^8 a^{-8} -4 z^8 a^{-10} -3 z^7 a^{-3} -3 z^7 a^{-5} +7 z^7 a^{-7} +4 z^7 a^{-9} -3 z^7 a^{-11} -2 z^6 a^{-2} +z^6 a^{-4} +z^6 a^{-6} +9 z^6 a^{-8} +10 z^6 a^{-10} -z^6 a^{-12} -z^5 a^{-1} +3 z^5 a^{-3} +8 z^5 a^{-5} -4 z^5 a^{-7} +z^5 a^{-9} +9 z^5 a^{-11} +3 z^4 a^{-2} +2 z^4 a^{-4} +6 z^4 a^{-6} -2 z^4 a^{-8} -6 z^4 a^{-10} +3 z^4 a^{-12} +3 z^3 a^{-1} +z^3 a^{-3} -7 z^3 a^{-5} +2 z^3 a^{-7} -7 z^3 a^{-11} -z^2 a^{-4} -5 z^2 a^{-6} -z^2 a^{-8} +z^2 a^{-10} -2 z^2 a^{-12} -3 z a^{-1} -2 z a^{-3} +2 z a^{-5} +z a^{-11} - a^{-2} + a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
22           1-1
20          2 2
18         41 -3
16        62  4
14       74   -3
12      86    2
10     77     0
8    68      -2
6   48       4
4  25        -3
2 15         4
0 1          -1
-21           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a221.gif

L11a221

L11a223.gif

L11a223