L11a232

From Knot Atlas
Jump to: navigation, search

L11a231.gif

L11a231

L11a233.gif

L11a233

Contents

L11a232.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a232 at Knotilus!


Link Presentations

[edit Notes on L11a232's Link Presentations]

Planar diagram presentation X8192 X12,4,13,3 X18,6,19,5 X22,16,7,15 X16,11,17,12 X20,17,21,18 X10,21,11,22 X14,10,15,9 X4,20,5,19 X2738 X6,14,1,13
Gauss code {1, -10, 2, -9, 3, -11}, {10, -1, 8, -7, 5, -2, 11, -8, 4, -5, 6, -3, 9, -6, 7, -4}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a232 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(2)^4-3 t(1) t(2)^4+2 t(2)^4-4 t(1)^2 t(2)^3+11 t(1) t(2)^3-6 t(2)^3+7 t(1)^2 t(2)^2-17 t(1) t(2)^2+7 t(2)^2-6 t(1)^2 t(2)+11 t(1) t(2)-4 t(2)+2 t(1)^2-3 t(1)+1}{t(1) t(2)^2} (db)
Jones polynomial -10 q^{9/2}+\frac{1}{q^{9/2}}+17 q^{7/2}-\frac{5}{q^{7/2}}-24 q^{5/2}+\frac{11}{q^{5/2}}+27 q^{3/2}-\frac{18}{q^{3/2}}-q^{13/2}+4 q^{11/2}-28 \sqrt{q}+\frac{24}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-5} -z a^{-5} - a^{-5} z^{-1} +2 z^5 a^{-3} -a^3 z^3+4 z^3 a^{-3} +5 z a^{-3} +2 a^{-3} z^{-1} -z^7 a^{-1} +2 a z^5-3 z^5 a^{-1} +3 a z^3-6 z^3 a^{-1} +2 a z-5 z a^{-1} +a z^{-1} -2 a^{-1} z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -z^3 a^{-7} +4 z^6 a^{-6} -4 z^4 a^{-6} +z^2 a^{-6} +9 z^7 a^{-5} -13 z^5 a^{-5} +10 z^3 a^{-5} -4 z a^{-5} + a^{-5} z^{-1} +12 z^8 a^{-4} +a^4 z^6-17 z^6 a^{-4} -a^4 z^4+11 z^4 a^{-4} -3 z^2 a^{-4} +9 z^9 a^{-3} +5 a^3 z^7-9 a^3 z^5-24 z^5 a^{-3} +4 a^3 z^3+27 z^3 a^{-3} -12 z a^{-3} +2 a^{-3} z^{-1} +3 z^{10} a^{-2} +10 a^2 z^8+21 z^8 a^{-2} -21 a^2 z^6-53 z^6 a^{-2} +12 a^2 z^4+38 z^4 a^{-2} -a^2 z^2-10 z^2 a^{-2} + a^{-2} +9 a z^9+18 z^9 a^{-1} -9 a z^7-23 z^7 a^{-1} -12 a z^5-13 z^5 a^{-1} +13 a z^3+25 z^3 a^{-1} -4 a z-12 z a^{-1} +a z^{-1} +2 a^{-1} z^{-1} +3 z^{10}+19 z^8-54 z^6+36 z^4-7 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          3 -3
10         71 6
8        103  -7
6       147   7
4      1411    -3
2     1413     1
0    1115      4
-2   713       -6
-4  411        7
-6 17         -6
-8 4          4
-101           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=0 {\mathbb Z}^{15}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{14}
r=1 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{14}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a231.gif

L11a231

L11a233.gif

L11a233