L11a245

From Knot Atlas
Jump to: navigation, search

L11a244.gif

L11a244

L11a246.gif

L11a246

Contents

L11a245.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a245 at Knotilus!


Link Presentations

[edit Notes on L11a245's Link Presentations]

Planar diagram presentation X8192 X16,7,17,8 X2,15,3,16 X18,5,19,6 X12,3,13,4 X22,11,7,12 X4,21,5,22 X14,20,15,19 X20,14,21,13 X6,9,1,10 X10,17,11,18
Gauss code {1, -3, 5, -7, 4, -10}, {2, -1, 10, -11, 6, -5, 9, -8, 3, -2, 11, -4, 8, -9, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a245 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 t(1) t(2)^4-2 t(2)^4+3 t(1)^2 t(2)^3-11 t(1) t(2)^3+7 t(2)^3-9 t(1)^2 t(2)^2+17 t(1) t(2)^2-9 t(2)^2+7 t(1)^2 t(2)-11 t(1) t(2)+3 t(2)-2 t(1)^2+2 t(1)}{t(1) t(2)^2} (db)
Jones polynomial -\sqrt{q}+\frac{4}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{17}{q^{5/2}}-\frac{24}{q^{7/2}}+\frac{27}{q^{9/2}}-\frac{28}{q^{11/2}}+\frac{24}{q^{13/2}}-\frac{18}{q^{15/2}}+\frac{11}{q^{17/2}}-\frac{5}{q^{19/2}}+\frac{1}{q^{21/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^9 \left(-z^3\right)+a^9 z+a^7 z^5-2 a^7 z^3-2 a^7 z+a^7 z^{-1} +3 a^5 z^5+4 a^5 z^3+a^5 z-a^5 z^{-1} +a^3 z^5-2 a^3 z^3-3 a^3 z-a z^3 (db)
Kauffman polynomial a^{12} z^6-a^{12} z^4+5 a^{11} z^7-9 a^{11} z^5+3 a^{11} z^3+a^{11} z+10 a^{10} z^8-21 a^{10} z^6+11 a^{10} z^4-a^{10} z^2+10 a^9 z^9-16 a^9 z^7+3 a^9 z^5-a^9 z^3+4 a^8 z^{10}+13 a^8 z^8-45 a^8 z^6+33 a^8 z^4-8 a^8 z^2+21 a^7 z^9-43 a^7 z^7+27 a^7 z^5-8 a^7 z^3+3 a^7 z-a^7 z^{-1} +4 a^6 z^{10}+16 a^6 z^8-50 a^6 z^6+44 a^6 z^4-13 a^6 z^2+a^6+11 a^5 z^9-13 a^5 z^7+a^5 z^5+5 a^5 z^3+a^5 z-a^5 z^{-1} +13 a^4 z^8-23 a^4 z^6+19 a^4 z^4-6 a^4 z^2+9 a^3 z^7-13 a^3 z^5+8 a^3 z^3-3 a^3 z+4 a^2 z^6-4 a^2 z^4+a z^5-a z^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
2           11
0          3 -3
-2         71 6
-4        114  -7
-6       136   7
-8      1411    -3
-10     1413     1
-12    1014      4
-14   814       -6
-16  411        7
-18 17         -6
-20 4          4
-221           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-6 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-5 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-4 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=-3 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a244.gif

L11a244

L11a246.gif

L11a246