From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a248 at Knotilus!

Link Presentations

[edit Notes on L11a248's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X22,12,9,11 X2,9,3,10 X4,22,5,21 X14,5,15,6 X20,13,21,14 X6,19,7,20 X16,8,17,7 X18,16,19,15 X8,18,1,17
Gauss code {1, -4, 2, -5, 6, -8, 9, -11}, {4, -1, 3, -2, 7, -6, 10, -9, 11, -10, 8, -7, 5, -3}
A Braid Representative
A Morse Link Presentation L11a248 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(u^2 v^2-2 u^2 v+u^2-2 u v^2+6 u v-2 u+v^2-2 v+1\right)}{u^{3/2} v^{3/2}} (db)
Jones polynomial -q^{13/2}+5 q^{11/2}-10 q^{9/2}+15 q^{7/2}-21 q^{5/2}+23 q^{3/2}-23 \sqrt{q}+\frac{19}{\sqrt{q}}-\frac{14}{q^{3/2}}+\frac{8}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{1}{q^{9/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^3 a^{-5} +2 z^5 a^{-3} -a^3 z^3+4 z^3 a^{-3} -a^3 z+3 z a^{-3} -z^7 a^{-1} +2 a z^5-4 z^5 a^{-1} +5 a z^3-9 z^3 a^{-1} +5 a z-7 z a^{-1} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-2} -z^{10}-4 a z^9-9 z^9 a^{-1} -5 z^9 a^{-3} -6 a^2 z^8-21 z^8 a^{-2} -10 z^8 a^{-4} -17 z^8-4 a^3 z^7-5 a z^7-5 z^7 a^{-1} -14 z^7 a^{-3} -10 z^7 a^{-5} -a^4 z^6+12 a^2 z^6+41 z^6 a^{-2} +9 z^6 a^{-4} -5 z^6 a^{-6} +40 z^6+10 a^3 z^5+30 a z^5+47 z^5 a^{-1} +43 z^5 a^{-3} +15 z^5 a^{-5} -z^5 a^{-7} +2 a^4 z^4-6 a^2 z^4-19 z^4 a^{-2} +4 z^4 a^{-4} +5 z^4 a^{-6} -26 z^4-8 a^3 z^3-30 a z^3-46 z^3 a^{-1} -30 z^3 a^{-3} -6 z^3 a^{-5} -a^4 z^2-3 z^2 a^{-4} +4 z^2+2 a^3 z+10 a z+14 z a^{-1} +6 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
14           11
12          4 -4
10         61 5
8        94  -5
6       126   6
4      119    -2
2     1212     0
0    913      4
-2   510       -5
-4  39        6
-6 15         -4
-8 3          3
-101           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.