L11a255

From Knot Atlas
Jump to: navigation, search

L11a254.gif

L11a254

L11a256.gif

L11a256

Contents

L11a255.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a255 at Knotilus!


Link Presentations

[edit Notes on L11a255's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X18,10,19,9 X22,18,9,17 X8,21,1,22 X20,13,21,14 X14,6,15,5 X16,8,17,7 X6,16,7,15 X4,20,5,19
Gauss code {1, -2, 3, -11, 8, -10, 9, -6}, {4, -1, 2, -3, 7, -8, 10, -9, 5, -4, 11, -7, 6, -5}
A Braid Representative
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation L11a255 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(1) t(2)+1)^2 \left(t(2)^2-t(2)+1\right)}{t(1)^{3/2} t(2)^{5/2}} (db)
Jones polynomial -q^{13/2}+3 q^{11/2}-6 q^{9/2}+10 q^{7/2}-13 q^{5/2}+15 q^{3/2}-16 \sqrt{q}+\frac{12}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{6}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-3} -5 z^5 a^{-3} -8 z^3 a^{-3} -4 z a^{-3} +z^9 a^{-1} -a z^7+7 z^7 a^{-1} -5 a z^5+18 z^5 a^{-1} -8 a z^3+20 z^3 a^{-1} -4 a z+8 z a^{-1} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -2 z^3 a^{-7} +3 z^6 a^{-6} -6 z^4 a^{-6} +z^2 a^{-6} +5 z^7 a^{-5} -11 z^5 a^{-5} +6 z^3 a^{-5} -z a^{-5} +6 z^8 a^{-4} +a^4 z^6-16 z^6 a^{-4} -3 a^4 z^4+18 z^4 a^{-4} +2 a^4 z^2-7 z^2 a^{-4} +5 z^9 a^{-3} +3 a^3 z^7-14 z^7 a^{-3} -9 a^3 z^5+20 z^5 a^{-3} +6 a^3 z^3-11 z^3 a^{-3} -a^3 z+4 z a^{-3} +2 z^{10} a^{-2} +4 a^2 z^8+z^8 a^{-2} -10 a^2 z^6-15 z^6 a^{-2} +4 a^2 z^4+29 z^4 a^{-2} -13 z^2 a^{-2} +4 a z^9+9 z^9 a^{-1} -11 a z^7-33 z^7 a^{-1} +13 a z^5+54 z^5 a^{-1} -13 a z^3-38 z^3 a^{-1} +4 a z+10 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +2 z^{10}-z^8-7 z^6+12 z^4-7 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          2 -2
10         41 3
8        62  -4
6       74   3
4      86    -2
2     87     1
0    610      4
-2   46       -2
-4  26        4
-6 14         -3
-8 2          2
-101           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a254.gif

L11a254

L11a256.gif

L11a256