From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a261 at Knotilus!

Link Presentations

[edit Notes on L11a261's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X18,8,19,7 X14,6,15,5 X22,17,9,18 X16,21,17,22 X20,13,21,14 X6,16,7,15 X4,20,5,19 X2,9,3,10 X8,11,1,12
Gauss code {1, -10, 2, -9, 4, -8, 3, -11}, {10, -1, 11, -2, 7, -4, 8, -6, 5, -3, 9, -7, 6, -5}
A Braid Representative
A Morse Link Presentation L11a261 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(t(2)^2+t(1) t(2)-t(2)+1\right) \left(t(1) t(2)^2-t(1) t(2)+t(2)+t(1)\right)}{t(1)^{3/2} t(2)^{5/2}} (db)
Jones polynomial -\frac{12}{q^{9/2}}-q^{7/2}+\frac{17}{q^{7/2}}+4 q^{5/2}-\frac{21}{q^{5/2}}-9 q^{3/2}+\frac{20}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{3}{q^{13/2}}+\frac{7}{q^{11/2}}+14 \sqrt{q}-\frac{19}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^3 z^7+a z^7-a^5 z^5+4 a^3 z^5+3 a z^5-z^5 a^{-1} -3 a^5 z^3+7 a^3 z^3+2 a z^3-2 z^3 a^{-1} -3 a^5 z+6 a^3 z-2 a z-z a^{-1} -a^5 z^{-1} +3 a^3 z^{-1} -2 a z^{-1} (db)
Kauffman polynomial -2 a^4 z^{10}-2 a^2 z^{10}-5 a^5 z^9-11 a^3 z^9-6 a z^9-5 a^6 z^8-6 a^4 z^8-10 a^2 z^8-9 z^8-3 a^7 z^7+11 a^5 z^7+24 a^3 z^7+2 a z^7-8 z^7 a^{-1} -a^8 z^6+13 a^6 z^6+22 a^4 z^6+25 a^2 z^6-4 z^6 a^{-2} +13 z^6+8 a^7 z^5-13 a^5 z^5-27 a^3 z^5+8 a z^5+13 z^5 a^{-1} -z^5 a^{-3} +3 a^8 z^4-12 a^6 z^4-25 a^4 z^4-20 a^2 z^4+5 z^4 a^{-2} -5 z^4-5 a^7 z^3+13 a^5 z^3+22 a^3 z^3-4 a z^3-7 z^3 a^{-1} +z^3 a^{-3} -2 a^8 z^2+6 a^6 z^2+14 a^4 z^2+8 a^2 z^2-z^2 a^{-2} +z^2-6 a^5 z-11 a^3 z-3 a z+2 z a^{-1} -a^6-3 a^4-3 a^2+a^5 z^{-1} +3 a^3 z^{-1} +2 a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
8           11
6          3 -3
4         61 5
2        83  -5
0       116   5
-2      1110    -1
-4     109     1
-6    711      4
-8   510       -5
-10  27        5
-12 15         -4
-14 2          2
-161           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.