L11a27

From Knot Atlas
Jump to: navigation, search

L11a26.gif

L11a26

L11a28.gif

L11a28

Contents

L11a27.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a27 at Knotilus!


Link Presentations

[edit Notes on L11a27's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,13,17,14 X14,7,15,8 X8,15,9,16 X20,11,21,12 X22,18,5,17 X18,22,19,21 X12,19,13,20 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 6, -9, 3, -4, 5, -3, 7, -8, 9, -6, 8, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a27 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2)^5+2 t(1) t(2)^4-6 t(2)^4-9 t(1) t(2)^3+11 t(2)^3+11 t(1) t(2)^2-9 t(2)^2-6 t(1) t(2)+2 t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{12}{q^{5/2}}-\frac{17}{q^{7/2}}+\frac{18}{q^{9/2}}-\frac{19}{q^{11/2}}+\frac{16}{q^{13/2}}-\frac{12}{q^{15/2}}+\frac{7}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{1}{q^{21/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^{11} z^{-1} +4 z a^9+3 a^9 z^{-1} -5 z^3 a^7-7 z a^7-3 a^7 z^{-1} +2 z^5 a^5+3 z^3 a^5+3 z a^5+2 a^5 z^{-1} +z^5 a^3-z a^3-a^3 z^{-1} -z^3 a-z a (db)
Kauffman polynomial a^{12} z^6-3 a^{12} z^4+3 a^{12} z^2-a^{12}+3 a^{11} z^7-8 a^{11} z^5+7 a^{11} z^3-3 a^{11} z+a^{11} z^{-1} +4 a^{10} z^8-6 a^{10} z^6-3 a^{10} z^4+6 a^{10} z^2-2 a^{10}+3 a^9 z^9+3 a^9 z^7-22 a^9 z^5+24 a^9 z^3-13 a^9 z+3 a^9 z^{-1} +a^8 z^{10}+10 a^8 z^8-25 a^8 z^6+17 a^8 z^4-5 a^8 z^2+7 a^7 z^9-3 a^7 z^7-21 a^7 z^5+31 a^7 z^3-17 a^7 z+3 a^7 z^{-1} +a^6 z^{10}+12 a^6 z^8-29 a^6 z^6+27 a^6 z^4-11 a^6 z^2+2 a^6+4 a^5 z^9+2 a^5 z^7-15 a^5 z^5+20 a^5 z^3-11 a^5 z+2 a^5 z^{-1} +6 a^4 z^8-8 a^4 z^6+5 a^4 z^4-a^4 z^2+5 a^3 z^7-7 a^3 z^5+4 a^3 z^3-3 a^3 z+a^3 z^{-1} +3 a^2 z^6-5 a^2 z^4+2 a^2 z^2+a z^5-2 a z^3+a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
2           11
0          2 -2
-2         51 4
-4        83  -5
-6       94   5
-8      98    -1
-10     109     1
-12    710      3
-14   59       -4
-16  27        5
-18 15         -4
-20 2          2
-221           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-5 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{10}
r=-3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a26.gif

L11a26

L11a28.gif

L11a28