From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a278 at Knotilus!

Link Presentations

[edit Notes on L11a278's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X8,9,1,10 X4,13,5,14 X20,17,21,18 X18,8,19,7 X6,20,7,19 X22,15,9,16 X16,21,17,22
Gauss code {1, -2, 3, -6, 4, -9, 8, -5}, {5, -1, 2, -3, 6, -4, 10, -11, 7, -8, 9, -7, 11, -10}
A Braid Representative
A Morse Link Presentation L11a278 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 t(2)^3 t(1)^3-2 t(2)^2 t(1)^3-2 t(2)^3 t(1)^2+3 t(2)^2 t(1)^2-2 t(2) t(1)^2-2 t(2)^2 t(1)+3 t(2) t(1)-2 t(1)-2 t(2)+2}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{6}{q^{11/2}}-\frac{7}{q^{13/2}}+\frac{6}{q^{15/2}}-\frac{5}{q^{17/2}}+\frac{3}{q^{19/2}}-\frac{2}{q^{21/2}}+\frac{1}{q^{23/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^9 \left(-z^5\right)-4 a^9 z^3-3 a^9 z+a^7 z^7+5 a^7 z^5+7 a^7 z^3+3 a^7 z+a^5 z^7+5 a^5 z^5+7 a^5 z^3+4 a^5 z+a^5 z^{-1} -a^3 z^5-5 a^3 z^3-6 a^3 z-a^3 z^{-1} (db)
Kauffman polynomial a^{14} z^4-2 a^{14} z^2+2 a^{13} z^5-4 a^{13} z^3+a^{13} z+2 a^{12} z^6-3 a^{12} z^4+a^{12} z^2+2 a^{11} z^7-4 a^{11} z^5+4 a^{11} z^3+2 a^{10} z^8-6 a^{10} z^6+8 a^{10} z^4-a^{10} z^2+2 a^9 z^9-9 a^9 z^7+17 a^9 z^5-11 a^9 z^3+2 a^9 z+a^8 z^{10}-4 a^8 z^8+7 a^8 z^6-6 a^8 z^4+a^8 z^2+3 a^7 z^9-15 a^7 z^7+27 a^7 z^5-22 a^7 z^3+5 a^7 z+a^6 z^{10}-5 a^6 z^8+11 a^6 z^6-16 a^6 z^4+8 a^6 z^2+a^5 z^9-3 a^5 z^7-2 a^5 z^5+8 a^5 z^3-5 a^5 z+a^5 z^{-1} +a^4 z^8-4 a^4 z^6+2 a^4 z^4+3 a^4 z^2-a^4+a^3 z^7-6 a^3 z^5+11 a^3 z^3-7 a^3 z+a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
0           11
-2            0
-4         31 2
-6        21  -1
-8       32   1
-10      32    -1
-12     43     1
-14    34      1
-16   23       -1
-18  13        2
-20 12         -1
-22 1          1
-241           -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.