From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a293 at Knotilus!

Link Presentations

[edit Notes on L11a293's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X20,14,21,13 X14,8,15,7 X16,6,17,5 X6,16,7,15 X4,21,5,22 X18,9,19,10 X22,17,9,18 X8,20,1,19
Gauss code {1, -2, 3, -8, 6, -7, 5, -11}, {9, -1, 2, -3, 4, -5, 7, -6, 10, -9, 11, -4, 8, -10}
A Braid Representative
A Morse Link Presentation L11a293 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(u^2 v^3-u^2 v^2+u^2 v+u v^4-u v^3+u v^2-u v+u+v^3-v^2+v\right)}{u^{3/2} v^{5/2}} (db)
Jones polynomial q^{7/2}-3 q^{5/2}+5 q^{3/2}-9 \sqrt{q}+\frac{11}{\sqrt{q}}-\frac{14}{q^{3/2}}+\frac{13}{q^{5/2}}-\frac{12}{q^{7/2}}+\frac{10}{q^{9/2}}-\frac{6}{q^{11/2}}+\frac{3}{q^{13/2}}-\frac{1}{q^{15/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^5 z^5+3 a^5 z^3+2 a^5 z-a^3 z^7-4 a^3 z^5-5 a^3 z^3-3 a^3 z-a z^7-4 a z^5+z^5 a^{-1} -4 a z^3+3 z^3 a^{-1} +z a^{-1} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial a^9 z^3+3 a^8 z^4+6 a^7 z^5-3 a^7 z^3+10 a^6 z^6-15 a^6 z^4+6 a^6 z^2+12 a^5 z^7-26 a^5 z^5+15 a^5 z^3-4 a^5 z+10 a^4 z^8-22 a^4 z^6+5 a^4 z^4+3 a^4 z^2+6 a^3 z^9-10 a^3 z^7-13 a^3 z^5+19 a^3 z^3-6 a^3 z+2 a^2 z^{10}+4 a^2 z^8+z^8 a^{-2} -34 a^2 z^6-5 z^6 a^{-2} +38 a^2 z^4+8 z^4 a^{-2} -10 a^2 z^2-4 z^2 a^{-2} +9 a z^9+3 z^9 a^{-1} -38 a z^7-16 z^7 a^{-1} +47 a z^5+28 z^5 a^{-1} -17 a z^3-17 z^3 a^{-1} +2 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +2 z^{10}-5 z^8-7 z^6+23 z^4-11 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
8           1-1
6          2 2
4         31 -2
2        62  4
0       53   -2
-2      96    3
-4     67     1
-6    67      -1
-8   46       2
-10  26        -4
-12 14         3
-14 2          -2
-161           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.