L11a330

From Knot Atlas
Jump to: navigation, search

L11a329.gif

L11a329

L11a331.gif

L11a331

Contents

L11a330.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a330 at Knotilus!


Link Presentations

[edit Notes on L11a330's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X20,5,21,6 X6,9,7,10 X18,12,19,11 X16,8,17,7 X4,14,5,13 X22,16,9,15 X8,18,1,17 X2,19,3,20 X14,22,15,21
Gauss code {1, -10, 2, -7, 3, -4, 6, -9}, {4, -1, 5, -2, 7, -11, 8, -6, 9, -5, 10, -3, 11, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a330 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(u^2 v^4-u^2 v^3+u^2 v^2-u v^4+3 u v^3-3 u v^2+3 u v-u+v^2-v+1\right)}{u^{3/2} v^{5/2}} (db)
Jones polynomial 19 q^{9/2}-22 q^{7/2}+21 q^{5/2}-\frac{1}{q^{5/2}}-19 q^{3/2}+\frac{4}{q^{3/2}}+q^{17/2}-4 q^{15/2}+9 q^{13/2}-14 q^{11/2}+13 \sqrt{q}-\frac{9}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-5} +4 z^5 a^{-5} +5 z^3 a^{-5} +3 z a^{-5} + a^{-5} z^{-1} -z^9 a^{-3} -6 z^7 a^{-3} -13 z^5 a^{-3} -13 z^3 a^{-3} -7 z a^{-3} -3 a^{-3} z^{-1} +z^7 a^{-1} +4 z^5 a^{-1} +5 z^3 a^{-1} +4 z a^{-1} +2 a^{-1} z^{-1} (db)
Kauffman polynomial z^4 a^{-10} +4 z^5 a^{-9} -z^3 a^{-9} +9 z^6 a^{-8} -8 z^4 a^{-8} +3 z^2 a^{-8} +13 z^7 a^{-7} -17 z^5 a^{-7} +8 z^3 a^{-7} -z a^{-7} +13 z^8 a^{-6} -18 z^6 a^{-6} +6 z^4 a^{-6} -3 z^2 a^{-6} + a^{-6} +9 z^9 a^{-5} -8 z^7 a^{-5} -9 z^5 a^{-5} +3 z^3 a^{-5} +2 z a^{-5} - a^{-5} z^{-1} +3 z^{10} a^{-4} +12 z^8 a^{-4} -45 z^6 a^{-4} +36 z^4 a^{-4} -13 z^2 a^{-4} +3 a^{-4} +15 z^9 a^{-3} -40 z^7 a^{-3} +28 z^5 a^{-3} -10 z^3 a^{-3} +7 z a^{-3} -3 a^{-3} z^{-1} +3 z^{10} a^{-2} +3 z^8 a^{-2} -31 z^6 a^{-2} +33 z^4 a^{-2} -10 z^2 a^{-2} +3 a^{-2} +6 z^9 a^{-1} +a z^7-18 z^7 a^{-1} -3 a z^5+13 z^5 a^{-1} +3 a z^3-z^3 a^{-1} -a z+3 z a^{-1} -2 a^{-1} z^{-1} +4 z^8-13 z^6+12 z^4-3 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          3 3
14         61 -5
12        83  5
10       116   -5
8      118    3
6     1011     1
4    911      -2
2   612       6
0  37        -4
-2 16         5
-4 3          -3
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a329.gif

L11a329

L11a331.gif

L11a331