# L11a330

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a330 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{(u-1) (v-1) \left(u^2 v^4-u^2 v^3+u^2 v^2-u v^4+3 u v^3-3 u v^2+3 u v-u+v^2-v+1\right)}{u^{3/2} v^{5/2}}$ (db) Jones polynomial $19 q^{9/2}-22 q^{7/2}+21 q^{5/2}-\frac{1}{q^{5/2}}-19 q^{3/2}+\frac{4}{q^{3/2}}+q^{17/2}-4 q^{15/2}+9 q^{13/2}-14 q^{11/2}+13 \sqrt{q}-\frac{9}{\sqrt{q}}$ (db) Signature 3 (db) HOMFLY-PT polynomial $z^7 a^{-5} +4 z^5 a^{-5} +5 z^3 a^{-5} +3 z a^{-5} + a^{-5} z^{-1} -z^9 a^{-3} -6 z^7 a^{-3} -13 z^5 a^{-3} -13 z^3 a^{-3} -7 z a^{-3} -3 a^{-3} z^{-1} +z^7 a^{-1} +4 z^5 a^{-1} +5 z^3 a^{-1} +4 z a^{-1} +2 a^{-1} z^{-1}$ (db) Kauffman polynomial $z^4 a^{-10} +4 z^5 a^{-9} -z^3 a^{-9} +9 z^6 a^{-8} -8 z^4 a^{-8} +3 z^2 a^{-8} +13 z^7 a^{-7} -17 z^5 a^{-7} +8 z^3 a^{-7} -z a^{-7} +13 z^8 a^{-6} -18 z^6 a^{-6} +6 z^4 a^{-6} -3 z^2 a^{-6} + a^{-6} +9 z^9 a^{-5} -8 z^7 a^{-5} -9 z^5 a^{-5} +3 z^3 a^{-5} +2 z a^{-5} - a^{-5} z^{-1} +3 z^{10} a^{-4} +12 z^8 a^{-4} -45 z^6 a^{-4} +36 z^4 a^{-4} -13 z^2 a^{-4} +3 a^{-4} +15 z^9 a^{-3} -40 z^7 a^{-3} +28 z^5 a^{-3} -10 z^3 a^{-3} +7 z a^{-3} -3 a^{-3} z^{-1} +3 z^{10} a^{-2} +3 z^8 a^{-2} -31 z^6 a^{-2} +33 z^4 a^{-2} -10 z^2 a^{-2} +3 a^{-2} +6 z^9 a^{-1} +a z^7-18 z^7 a^{-1} -3 a z^5+13 z^5 a^{-1} +3 a z^3-z^3 a^{-1} -a z+3 z a^{-1} -2 a^{-1} z^{-1} +4 z^8-13 z^6+12 z^4-3 z^2$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-4-3-2-101234567χ
18           1-1
16          3 3
14         61 -5
12        83  5
10       116   -5
8      118    3
6     1011     1
4    911      -2
2   612       6
0  37        -4
-2 16         5
-4 3          -3
-61           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=2$ $i=4$ $r=-4$ ${\mathbb Z}$ $r=-3$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-2$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-1$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=0$ ${\mathbb Z}^{12}\oplus{\mathbb Z}_2^{7}$ ${\mathbb Z}^{9}$ $r=1$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=2$ ${\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11}$ ${\mathbb Z}^{11}$ $r=3$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{11}$ ${\mathbb Z}^{11}$ $r=4$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=5$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=6$ ${\mathbb Z}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=7$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.