L11a336

From Knot Atlas
Jump to: navigation, search

L11a335.gif

L11a335

L11a337.gif

L11a337

Contents

L11a336.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a336 at Knotilus!


Link Presentations

[edit Notes on L11a336's Link Presentations]

Planar diagram presentation X10,1,11,2 X8,9,1,10 X14,3,15,4 X22,11,9,12 X2,15,3,16 X4,19,5,20 X20,5,21,6 X18,21,19,22 X6,13,7,14 X16,7,17,8 X12,17,13,18
Gauss code {1, -5, 3, -6, 7, -9, 10, -2}, {2, -1, 4, -11, 9, -3, 5, -10, 11, -8, 6, -7, 8, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a336 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{3 u^3 v^2-3 u^3 v+u^3+4 u^2 v^3-10 u^2 v^2+11 u^2 v-4 u^2-4 u v^3+11 u v^2-10 u v+4 u+v^3-3 v^2+3 v}{u^{3/2} v^{3/2}} (db)
Jones polynomial -\frac{1}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{8}{q^{9/2}}+\frac{13}{q^{11/2}}-\frac{20}{q^{13/2}}+\frac{23}{q^{15/2}}-\frac{23}{q^{17/2}}+\frac{21}{q^{19/2}}-\frac{16}{q^{21/2}}+\frac{10}{q^{23/2}}-\frac{5}{q^{25/2}}+\frac{1}{q^{27/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -z a^{13}+4 z^3 a^{11}+5 z a^{11}-3 z^5 a^9-6 z^3 a^9-2 z a^9+a^9 z^{-1} -3 z^5 a^7-7 z^3 a^7-5 z a^7-a^7 z^{-1} -z^5 a^5-2 z^3 a^5-z a^5 (db)
Kauffman polynomial a^{16} z^6-a^{16} z^4+5 a^{15} z^7-10 a^{15} z^5+4 a^{15} z^3+a^{15} z+9 a^{14} z^8-20 a^{14} z^6+11 a^{14} z^4-2 a^{14} z^2+7 a^{13} z^9-5 a^{13} z^7-17 a^{13} z^5+14 a^{13} z^3-2 a^{13} z+2 a^{12} z^{10}+17 a^{12} z^8-51 a^{12} z^6+43 a^{12} z^4-15 a^{12} z^2+13 a^{11} z^9-18 a^{11} z^7-3 a^{11} z^5+7 a^{11} z^3+a^{11} z+2 a^{10} z^{10}+15 a^{10} z^8-40 a^{10} z^6+36 a^{10} z^4-11 a^{10} z^2+6 a^9 z^9-2 a^9 z^7-7 a^9 z^5+9 a^9 z^3-3 a^9 z+a^9 z^{-1} +7 a^8 z^8-7 a^8 z^6+a^8 z^4+3 a^8 z^2-a^8+6 a^7 z^7-10 a^7 z^5+10 a^7 z^3-6 a^7 z+a^7 z^{-1} +3 a^6 z^6-4 a^6 z^4+a^6 z^2+a^5 z^5-2 a^5 z^3+a^5 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-4           11
-6          31-2
-8         5  5
-10        83  -5
-12       125   7
-14      118    -3
-16     1212     0
-18    911      2
-20   712       -5
-22  410        6
-24 16         -5
-26 4          4
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-8 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=-7 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=-6 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=-5 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=-4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a335.gif

L11a335

L11a337.gif

L11a337