L11a339

From Knot Atlas
Jump to: navigation, search

L11a338.gif

L11a338

L11a340.gif

L11a340

Contents

L11a339.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a339 at Knotilus!


Link Presentations

[edit Notes on L11a339's Link Presentations]

Planar diagram presentation X10,1,11,2 X14,4,15,3 X22,5,9,6 X6,9,7,10 X18,12,19,11 X20,14,21,13 X12,20,13,19 X16,8,17,7 X4,16,5,15 X8,18,1,17 X2,21,3,22
Gauss code {1, -11, 2, -9, 3, -4, 8, -10}, {4, -1, 5, -7, 6, -2, 9, -8, 10, -5, 7, -6, 11, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11a339 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(1)^2 t(2)^4-t(1) t(2)^4+3 t(1) t(2)^3+t(1)^2 t(2)^2-t(1) t(2)^2+t(2)^2+3 t(1) t(2)-t(1)+1\right)}{t(1)^{3/2} t(2)^{5/2}} (db)
Jones polynomial 14 q^{9/2}-17 q^{7/2}+16 q^{5/2}-\frac{1}{q^{5/2}}-14 q^{3/2}+\frac{3}{q^{3/2}}+q^{17/2}-3 q^{15/2}+7 q^{13/2}-11 q^{11/2}+10 \sqrt{q}-\frac{7}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^9 a^{-3} +z^7 a^{-1} -7 z^7 a^{-3} +z^7 a^{-5} +5 z^5 a^{-1} -19 z^5 a^{-3} +5 z^5 a^{-5} +9 z^3 a^{-1} -25 z^3 a^{-3} +9 z^3 a^{-5} +8 z a^{-1} -15 z a^{-3} +7 z a^{-5} +2 a^{-1} z^{-1} -3 a^{-3} z^{-1} + a^{-5} z^{-1} (db)
Kauffman polynomial -2 z^{10} a^{-2} -2 z^{10} a^{-4} -4 z^9 a^{-1} -10 z^9 a^{-3} -6 z^9 a^{-5} -z^8 a^{-2} -6 z^8 a^{-4} -8 z^8 a^{-6} -3 z^8-a z^7+13 z^7 a^{-1} +33 z^7 a^{-3} +11 z^7 a^{-5} -8 z^7 a^{-7} +20 z^6 a^{-2} +29 z^6 a^{-4} +14 z^6 a^{-6} -6 z^6 a^{-8} +11 z^6+4 a z^5-11 z^5 a^{-1} -41 z^5 a^{-3} -11 z^5 a^{-5} +12 z^5 a^{-7} -3 z^5 a^{-9} -24 z^4 a^{-2} -33 z^4 a^{-4} -12 z^4 a^{-6} +7 z^4 a^{-8} -z^4 a^{-10} -11 z^4-5 a z^3+6 z^3 a^{-1} +35 z^3 a^{-3} +13 z^3 a^{-5} -9 z^3 a^{-7} +2 z^3 a^{-9} +10 z^2 a^{-2} +18 z^2 a^{-4} +6 z^2 a^{-6} -4 z^2 a^{-8} +z^2 a^{-10} +3 z^2+2 a z-7 z a^{-1} -17 z a^{-3} -6 z a^{-5} +2 z a^{-7} -3 a^{-2} -3 a^{-4} - a^{-6} +2 a^{-1} z^{-1} +3 a^{-3} z^{-1} + a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          2 2
14         51 -4
12        62  4
10       85   -3
8      96    3
6     78     1
4    79      -2
2   59       4
0  25        -3
-2 15         4
-4 2          -2
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a338.gif

L11a338

L11a340.gif

L11a340