# L11a354

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11a354 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{(t(1)-1) (t(2)-1) \left(t(2)^2 t(1)^2-3 t(2) t(1)^2+t(1)^2-2 t(2)^2 t(1)+t(2) t(1)-2 t(1)+t(2)^2-3 t(2)+1\right)}{t(1)^{3/2} t(2)^{3/2}}$ (db) Jones polynomial $-q^{5/2}+3 q^{3/2}-8 \sqrt{q}+\frac{12}{\sqrt{q}}-\frac{17}{q^{3/2}}+\frac{19}{q^{5/2}}-\frac{19}{q^{7/2}}+\frac{17}{q^{9/2}}-\frac{13}{q^{11/2}}+\frac{7}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{1}{q^{17/2}}$ (db) Signature -3 (db) HOMFLY-PT polynomial $-z^3 a^7-2 z a^7+2 z^5 a^5+5 z^3 a^5+3 z a^5-z^7 a^3-3 z^5 a^3-3 z^3 a^3-2 z a^3+2 z^5 a+5 z^3 a+3 z a+a z^{-1} -z^3 a^{-1} -2 z a^{-1} - a^{-1} z^{-1}$ (db) Kauffman polynomial $-z^4 a^{10}+z^2 a^{10}-3 z^5 a^9+2 z^3 a^9-6 z^6 a^8+5 z^4 a^8-2 z^2 a^8-10 z^7 a^7+17 z^5 a^7-16 z^3 a^7+4 z a^7-11 z^8 a^6+21 z^6 a^6-17 z^4 a^6+5 z^2 a^6-7 z^9 a^5+4 z^7 a^5+20 z^5 a^5-23 z^3 a^5+6 z a^5-2 z^{10} a^4-13 z^8 a^4+46 z^6 a^4-39 z^4 a^4+12 z^2 a^4-11 z^9 a^3+24 z^7 a^3-2 z^5 a^3-11 z^3 a^3+4 z a^3-2 z^{10} a^2-5 z^8 a^2+29 z^6 a^2-26 z^4 a^2+6 z^2 a^2-4 z^9 a+9 z^7 a+2 z^5 a-12 z^3 a+6 z a-a z^{-1} -3 z^8+10 z^6-10 z^4+2 z^2+1-z^7 a^{-1} +4 z^5 a^{-1} -6 z^3 a^{-1} +4 z a^{-1} - a^{-1} z^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-7-6-5-4-3-2-101234χ
6           11
4          2 -2
2         61 5
0        62  -4
-2       116   5
-4      108    -2
-6     99     0
-8    810      2
-10   59       -4
-12  28        6
-14 15         -4
-16 2          2
-181           -1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-4$ $i=-2$ $r=-7$ ${\mathbb Z}$ $r=-6$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-4$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5}$ ${\mathbb Z}^{5}$ $r=-3$ ${\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8}$ ${\mathbb Z}^{8}$ $r=-2$ ${\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9}$ ${\mathbb Z}^{9}$ $r=-1$ ${\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10}$ ${\mathbb Z}^{10}$ $r=0$ ${\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9}$ ${\mathbb Z}^{11}$ $r=1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=2$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=3$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=4$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.