L11a363

From Knot Atlas
Jump to: navigation, search

L11a362.gif

L11a362

L11a364.gif

L11a364

Contents

L11a363.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a363 at Knotilus!


Link Presentations

[edit Notes on L11a363's Link Presentations]

Planar diagram presentation X12,1,13,2 X14,4,15,3 X22,14,11,13 X2,11,3,12 X4,22,5,21 X20,10,21,9 X16,6,17,5 X8,18,9,17 X18,8,19,7 X6,20,7,19 X10,16,1,15
Gauss code {1, -4, 2, -5, 7, -10, 9, -8, 6, -11}, {4, -1, 3, -2, 11, -7, 8, -9, 10, -6, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a363 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^4 v^2-u^4 v+2 u^3 v^3-6 u^3 v^2+4 u^3 v-u^3+u^2 v^4-6 u^2 v^3+9 u^2 v^2-6 u^2 v+u^2-u v^4+4 u v^3-6 u v^2+2 u v-v^3+v^2}{u^2 v^2} (db)
Jones polynomial q^{21/2}-3 q^{19/2}+6 q^{17/2}-11 q^{15/2}+14 q^{13/2}-17 q^{11/2}+17 q^{9/2}-15 q^{7/2}+11 q^{5/2}-7 q^{3/2}+3 \sqrt{q}-\frac{1}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^5 a^{-3} -2 z^5 a^{-5} -z^5 a^{-7} +z^3 a^{-1} -3 z^3 a^{-5} -z^3 a^{-7} +z^3 a^{-9} +z a^{-1} +2 z a^{-3} -z a^{-7} +z a^{-9} + a^{-5} z^{-1} - a^{-7} z^{-1} (db)
Kauffman polynomial -z^{10} a^{-6} -z^{10} a^{-8} -3 z^9 a^{-5} -6 z^9 a^{-7} -3 z^9 a^{-9} -5 z^8 a^{-4} -7 z^8 a^{-6} -6 z^8 a^{-8} -4 z^8 a^{-10} -5 z^7 a^{-3} -3 z^7 a^{-5} +7 z^7 a^{-7} +2 z^7 a^{-9} -3 z^7 a^{-11} -3 z^6 a^{-2} +5 z^6 a^{-4} +11 z^6 a^{-6} +13 z^6 a^{-8} +9 z^6 a^{-10} -z^6 a^{-12} -z^5 a^{-1} +8 z^5 a^{-3} +9 z^5 a^{-5} -3 z^5 a^{-7} +6 z^5 a^{-9} +9 z^5 a^{-11} +5 z^4 a^{-2} -z^4 a^{-4} -4 z^4 a^{-6} -5 z^4 a^{-8} -4 z^4 a^{-10} +3 z^4 a^{-12} +2 z^3 a^{-1} -5 z^3 a^{-3} -3 z^3 a^{-5} +6 z^3 a^{-7} -6 z^3 a^{-9} -8 z^3 a^{-11} -2 z^2 a^{-2} +z^2 a^{-6} -z^2 a^{-10} -2 z^2 a^{-12} -z a^{-1} +2 z a^{-3} -3 z a^{-5} -5 z a^{-7} +3 z a^{-9} +2 z a^{-11} - a^{-6} + a^{-5} z^{-1} + a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456789χ
22           1-1
20          2 2
18         41 -3
16        72  5
14       85   -3
12      96    3
10     88     0
8    79      -2
6   48       4
4  37        -4
2 15         4
0 2          -2
-21           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=6 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=7 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=9 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a362.gif

L11a362

L11a364.gif

L11a364