L11a381

From Knot Atlas
Jump to: navigation, search

L11a380.gif

L11a380

L11a382.gif

L11a382

Contents

L11a381.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a381 at Knotilus!


Link Presentations

[edit Notes on L11a381's Link Presentations]

Planar diagram presentation X12,1,13,2 X20,13,21,14 X10,21,1,22 X14,4,15,3 X18,6,19,5 X6,11,7,12 X22,7,11,8 X4,16,5,15 X8,18,9,17 X16,10,17,9 X2,20,3,19
Gauss code {1, -11, 4, -8, 5, -6, 7, -9, 10, -3}, {6, -1, 2, -4, 8, -10, 9, -5, 11, -2, 3, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a381 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2)^2 t(1)^4-t(2) t(1)^4-t(2)^4 t(1)^3+5 t(2)^3 t(1)^3-8 t(2)^2 t(1)^3+5 t(2) t(1)^3-t(1)^3+2 t(2)^4 t(1)^2-9 t(2)^3 t(1)^2+15 t(2)^2 t(1)^2-9 t(2) t(1)^2+2 t(1)^2-t(2)^4 t(1)+5 t(2)^3 t(1)-8 t(2)^2 t(1)+5 t(2) t(1)-t(1)-t(2)^3+t(2)^2}{t(1)^2 t(2)^2} (db)
Jones polynomial -10 q^{9/2}+\frac{1}{q^{9/2}}+17 q^{7/2}-\frac{4}{q^{7/2}}-23 q^{5/2}+\frac{10}{q^{5/2}}+26 q^{3/2}-\frac{17}{q^{3/2}}-q^{13/2}+4 q^{11/2}-27 \sqrt{q}+\frac{22}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-1} +2 a z^5-2 z^5 a^{-1} +2 z^5 a^{-3} -a^3 z^3+3 a z^3+3 z^3 a^{-3} -z^3 a^{-5} -a^3 z+3 z a^{-1} -z a^{-5} + a^{-1} z^{-1} - a^{-3} z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -z^3 a^{-7} +4 z^6 a^{-6} -4 z^4 a^{-6} +z^2 a^{-6} +9 z^7 a^{-5} -13 z^5 a^{-5} +9 z^3 a^{-5} -3 z a^{-5} +12 z^8 a^{-4} +a^4 z^6-18 z^6 a^{-4} -2 a^4 z^4+12 z^4 a^{-4} +a^4 z^2-4 z^2 a^{-4} +9 z^9 a^{-3} +4 a^3 z^7-3 z^7 a^{-3} -8 a^3 z^5-15 z^5 a^{-3} +5 a^3 z^3+13 z^3 a^{-3} -a^3 z-z a^{-3} - a^{-3} z^{-1} +3 z^{10} a^{-2} +8 a^2 z^8+18 z^8 a^{-2} -17 a^2 z^6-46 z^6 a^{-2} +12 a^2 z^4+33 z^4 a^{-2} -4 a^2 z^2-9 z^2 a^{-2} + a^{-2} +8 a z^9+17 z^9 a^{-1} -11 a z^7-27 z^7 a^{-1} +7 z^5 a^{-1} -2 z^3 a^{-1} +2 a z+5 z a^{-1} - a^{-1} z^{-1} +3 z^{10}+14 z^8-42 z^6+31 z^4-9 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          3 -3
10         71 6
8        103  -7
6       137   6
4      1411    -3
2     1312     1
0    1015      5
-2   712       -5
-4  310        7
-6 17         -6
-8 3          3
-101           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=0 {\mathbb Z}^{15}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{13}
r=1 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{14} {\mathbb Z}^{14}
r=2 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{13}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a380.gif

L11a380

L11a382.gif

L11a382