L11a383

From Knot Atlas
Jump to: navigation, search

L11a382.gif

L11a382

L11a384.gif

L11a384

Contents

L11a383.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a383 at Knotilus!


Link Presentations

[edit Notes on L11a383's Link Presentations]

Planar diagram presentation X12,1,13,2 X2,13,3,14 X14,3,15,4 X10,11,1,12 X22,15,11,16 X16,8,17,7 X6,22,7,21 X20,6,21,5 X4,20,5,19 X18,10,19,9 X8,18,9,17
Gauss code {1, -2, 3, -9, 8, -7, 6, -11, 10, -4}, {4, -1, 2, -3, 5, -6, 11, -10, 9, -8, 7, -5}
A Braid Representative
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11a383 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^4 v^4-u^4 v^3-u^3 v^4+4 u^3 v^3-3 u^3 v^2-3 u^2 v^3+7 u^2 v^2-3 u^2 v-3 u v^2+4 u v-u-v+1}{u^2 v^2} (db)
Jones polynomial -4 q^{9/2}+\frac{1}{q^{9/2}}+7 q^{7/2}-\frac{2}{q^{7/2}}-9 q^{5/2}+\frac{4}{q^{5/2}}+10 q^{3/2}-\frac{7}{q^{3/2}}-q^{13/2}+2 q^{11/2}-11 \sqrt{q}+\frac{8}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-3} -6 z^5 a^{-3} -12 z^3 a^{-3} -8 z a^{-3} - a^{-3} z^{-1} +z^9 a^{-1} -a z^7+8 z^7 a^{-1} -6 a z^5+24 z^5 a^{-1} -12 a z^3+32 z^3 a^{-1} -8 a z+17 z a^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -3 z^3 a^{-7} +z a^{-7} +2 z^6 a^{-6} -5 z^4 a^{-6} +z^2 a^{-6} +3 z^7 a^{-5} -8 z^5 a^{-5} +5 z^3 a^{-5} -z a^{-5} +4 z^8 a^{-4} +a^4 z^6-15 z^6 a^{-4} -4 a^4 z^4+22 z^4 a^{-4} +4 a^4 z^2-10 z^2 a^{-4} +3 z^9 a^{-3} +2 a^3 z^7-11 z^7 a^{-3} -7 a^3 z^5+18 z^5 a^{-3} +6 a^3 z^3-11 z^3 a^{-3} -a^3 z+7 z a^{-3} - a^{-3} z^{-1} +z^{10} a^{-2} +2 a^2 z^8+z^8 a^{-2} -5 a^2 z^6-14 z^6 a^{-2} +2 a^2 z^4+31 z^4 a^{-2} -a^2 z^2-16 z^2 a^{-2} + a^{-2} +2 a z^9+5 z^9 a^{-1} -7 a z^7-23 z^7 a^{-1} +15 a z^5+49 z^5 a^{-1} -22 a z^3-47 z^3 a^{-1} +9 a z+19 z a^{-1} - a^{-1} z^{-1} +z^{10}-z^8-3 z^6+10 z^4-10 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          1 -1
10         31 2
8        41  -3
6       53   2
4      65    -1
2     54     1
0    47      3
-2   34       -1
-4  14        3
-6 13         -2
-8 1          1
-101           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a382.gif

L11a382

L11a384.gif

L11a384