L11a393

From Knot Atlas
Jump to: navigation, search

L11a392.gif

L11a392

L11a394.gif

L11a394

Contents

L11a393.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a393 at Knotilus!


Link Presentations

[edit Notes on L11a393's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X22,16,9,15 X18,12,19,11 X20,14,21,13 X12,20,13,19 X14,22,15,21 X8,18,5,17 X16,8,17,7 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 9, -8}, {11, -2, 4, -6, 5, -7, 3, -9, 8, -4, 6, -5, 7, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a393 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v w^5-u v w^4+u v w^3-u v w^2+u v w-u v-u w^5+2 u w^4-2 u w^3+2 u w^2-2 u w+2 u-2 v w^5+2 v w^4-2 v w^3+2 v w^2-2 v w+v+w^5-w^4+w^3-w^2+w-1}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial -q^9+3 q^8-6 q^7+7 q^6-10 q^5+11 q^4-9 q^3+9 q^2+ q^{-2} -5 q- q^{-1} +5 (db)
Signature 4 (db)
HOMFLY-PT polynomial z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -11 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-21 z^2 a^{-2} +20 z^2 a^{-4} -5 z^2 a^{-6} +5 z^2-20 a^{-2} +18 a^{-4} -5 a^{-6} +7-8 a^{-2} z^{-2} +7 a^{-4} z^{-2} -2 a^{-6} z^{-2} +3 z^{-2} (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +z^9 a^{-1} +5 z^9 a^{-3} +4 z^9 a^{-5} -z^8 a^{-2} +5 z^8 a^{-4} +7 z^8 a^{-6} +z^8-3 z^7 a^{-1} -18 z^7 a^{-3} -8 z^7 a^{-5} +7 z^7 a^{-7} -15 z^6 a^{-2} -34 z^6 a^{-4} -19 z^6 a^{-6} +7 z^6 a^{-8} -7 z^6-5 z^5 a^{-1} +2 z^5 a^{-3} -9 z^5 a^{-5} -10 z^5 a^{-7} +6 z^5 a^{-9} +42 z^4 a^{-2} +51 z^4 a^{-4} +16 z^4 a^{-6} -8 z^4 a^{-8} +3 z^4 a^{-10} +18 z^4+23 z^3 a^{-1} +44 z^3 a^{-3} +25 z^3 a^{-5} -3 z^3 a^{-7} -6 z^3 a^{-9} +z^3 a^{-11} -47 z^2 a^{-2} -37 z^2 a^{-4} -12 z^2 a^{-6} -22 z^2-24 z a^{-1} -45 z a^{-3} -21 z a^{-5} +3 z a^{-7} +3 z a^{-9} +28 a^{-2} +22 a^{-4} +7 a^{-6} + a^{-8} +13+8 a^{-1} z^{-1} +15 a^{-3} z^{-1} +7 a^{-5} z^{-1} - a^{-7} z^{-1} - a^{-9} z^{-1} -8 a^{-2} z^{-2} -7 a^{-4} z^{-2} -2 a^{-6} z^{-2} -3 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         41 -3
13        32  1
11       74   -3
9      43    1
7     57     2
5    44      0
3   48       4
1  11        0
-1  4         4
-311          0
-51           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a392.gif

L11a392

L11a394.gif

L11a394