L11a40

From Knot Atlas
Jump to: navigation, search

L11a39.gif

L11a39

L11a41.gif

L11a41

Contents

L11a40.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a40 at Knotilus!


Link Presentations

[edit Notes on L11a40's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,10,13,9 X18,15,19,16 X16,7,17,8 X8,17,9,18 X22,20,5,19 X20,14,21,13 X14,22,15,21 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {10, -1, 5, -6, 3, -2, 11, -3, 8, -9, 4, -5, 6, -4, 7, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a40 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1)^5}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -q^{13/2}+4 q^{11/2}-8 q^{9/2}+14 q^{7/2}-19 q^{5/2}+20 q^{3/2}-21 \sqrt{q}+\frac{17}{\sqrt{q}}-\frac{13}{q^{3/2}}+\frac{7}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^7 a^{-1} +2 a z^5-4 z^5 a^{-1} +2 z^5 a^{-3} -a^3 z^3+6 a z^3-9 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} -2 a^3 z+8 a z-10 z a^{-1} +5 z a^{-3} -z a^{-5} -a^3 z^{-1} +4 a z^{-1} -4 a^{-1} z^{-1} + a^{-3} z^{-1} (db)
Kauffman polynomial z^5 a^{-7} -z^3 a^{-7} +4 z^6 a^{-6} -6 z^4 a^{-6} +3 z^2 a^{-6} +7 z^7 a^{-5} -10 z^5 a^{-5} +6 z^3 a^{-5} -2 z a^{-5} +7 z^8 a^{-4} +a^4 z^6-3 z^6 a^{-4} -3 a^4 z^4-10 z^4 a^{-4} +3 a^4 z^2+9 z^2 a^{-4} -a^4- a^{-4} +4 z^9 a^{-3} +3 a^3 z^7+10 z^7 a^{-3} -8 a^3 z^5-31 z^5 a^{-3} +8 a^3 z^3+26 z^3 a^{-3} -4 a^3 z-10 z a^{-3} +a^3 z^{-1} + a^{-3} z^{-1} +z^{10} a^{-2} +4 a^2 z^8+14 z^8 a^{-2} -5 a^2 z^6-21 z^6 a^{-2} -5 a^2 z^4-3 z^4 a^{-2} +10 a^2 z^2+13 z^2 a^{-2} -4 a^2-4 a^{-2} +3 a z^9+7 z^9 a^{-1} +5 a z^7+5 z^7 a^{-1} -26 a z^5-38 z^5 a^{-1} +29 a z^3+40 z^3 a^{-1} -15 a z-19 z a^{-1} +4 a z^{-1} +4 a^{-1} z^{-1} +z^{10}+11 z^8-20 z^6-z^4+14 z^2-7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          3 -3
10         51 4
8        93  -6
6       105   5
4      109    -1
2     1110     1
0    812      4
-2   59       -4
-4  28        6
-6 15         -4
-8 2          2
-101           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a39.gif

L11a39

L11a41.gif

L11a41