L11a431

From Knot Atlas
Jump to: navigation, search

L11a430.gif

L11a430

L11a432.gif

L11a432

Contents

L11a431.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a431 at Knotilus!


Link Presentations

[edit Notes on L11a431's Link Presentations]

Planar diagram presentation X6172 X14,6,15,5 X8493 X2,16,3,15 X16,7,17,8 X18,10,19,9 X20,11,21,12 X22,20,13,19 X12,14,5,13 X4,17,1,18 X10,21,11,22
Gauss code {1, -4, 3, -10}, {2, -1, 5, -3, 6, -11, 7, -9}, {9, -2, 4, -5, 10, -6, 8, -7, 11, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a431 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) (w-1) \left(v^2 w^2-v^2 w-v w^2+v w-v-w+1\right)}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial q^7-4 q^6+7 q^5-11 q^4- q^{-4} +16 q^3+4 q^{-3} -17 q^2-7 q^{-2} +18 q+12 q^{-1} -14 (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-8 z^4 a^{-2} +3 z^4 a^{-4} +7 z^4-2 a^2 z^2-3 z^2 a^{-2} +z^2 a^{-4} +4 z^2+a^2+3 a^{-2} - a^{-4} -3+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} (db)
Kauffman polynomial 2 z^{10} a^{-2} +2 z^{10}+5 a z^9+11 z^9 a^{-1} +6 z^9 a^{-3} +4 a^2 z^8+9 z^8 a^{-2} +8 z^8 a^{-4} +5 z^8+a^3 z^7-16 a z^7-31 z^7 a^{-1} -6 z^7 a^{-3} +8 z^7 a^{-5} -15 a^2 z^6-36 z^6 a^{-2} -8 z^6 a^{-4} +7 z^6 a^{-6} -36 z^6-3 a^3 z^5+11 a z^5+19 z^5 a^{-1} -5 z^5 a^{-3} -6 z^5 a^{-5} +4 z^5 a^{-7} +16 a^2 z^4+28 z^4 a^{-2} -4 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +40 z^4+2 a^3 z^3+2 z^3 a^{-3} -3 z^3 a^{-5} -3 z^3 a^{-7} -5 a^2 z^2+z^2 a^{-2} +5 z^2 a^{-4} +2 z^2 a^{-6} -7 z^2+a z+3 z a^{-1} +3 z a^{-3} +z a^{-5} -2 a^2-6 a^{-2} -2 a^{-4} -5-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         41 3
9        73  -4
7       94   5
5      87    -1
3     109     1
1    812      4
-1   46       -2
-3  38        5
-5 14         -3
-7 3          3
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{10}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a430.gif

L11a430

L11a432.gif

L11a432