L11a439

From Knot Atlas
Jump to: navigation, search

L11a438.gif

L11a438

L11a440.gif

L11a440

Contents

L11a439.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a439 at Knotilus!


Link Presentations

[edit Notes on L11a439's Link Presentations]

Planar diagram presentation X6172 X14,6,15,5 X10,4,11,3 X2,16,3,15 X20,18,21,17 X16,9,17,10 X8,20,9,19 X18,8,19,7 X22,12,13,11 X12,14,5,13 X4,21,1,22
Gauss code {1, -4, 3, -11}, {2, -1, 8, -7, 6, -3, 9, -10}, {10, -2, 4, -6, 5, -8, 7, -5, 11, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a439 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1)^2 (t(3)-1)^2 (t(2) t(3)+1)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial q^{10}-4 q^9+9 q^8-14 q^7+18 q^6-20 q^5+21 q^4-16 q^3+13 q^2-7 q+4- q^{-1} (db)
Signature 4 (db)
HOMFLY-PT polynomial z^4 a^{-8} +2 z^2 a^{-8} + a^{-8} -2 z^6 a^{-6} -7 z^4 a^{-6} -7 z^2 a^{-6} + a^{-6} z^{-2} -2 a^{-6} +z^8 a^{-4} +5 z^6 a^{-4} +9 z^4 a^{-4} +6 z^2 a^{-4} -2 a^{-4} z^{-2} - a^{-4} -z^6 a^{-2} -3 z^4 a^{-2} -z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} (db)
Kauffman polynomial z^4 a^{-12} +4 z^5 a^{-11} -z^3 a^{-11} +9 z^6 a^{-10} -8 z^4 a^{-10} +3 z^2 a^{-10} - a^{-10} +13 z^7 a^{-9} -18 z^5 a^{-9} +9 z^3 a^{-9} -2 z a^{-9} +12 z^8 a^{-8} -15 z^6 a^{-8} +4 z^2 a^{-8} - a^{-8} +7 z^9 a^{-7} +z^7 a^{-7} -27 z^5 a^{-7} +21 z^3 a^{-7} -6 z a^{-7} +2 z^{10} a^{-6} +15 z^8 a^{-6} -49 z^6 a^{-6} +38 z^4 a^{-6} -9 z^2 a^{-6} + a^{-6} z^{-2} - a^{-6} +12 z^9 a^{-5} -28 z^7 a^{-5} +8 z^5 a^{-5} +10 z^3 a^{-5} -2 z a^{-5} -2 a^{-5} z^{-1} +2 z^{10} a^{-4} +7 z^8 a^{-4} -40 z^6 a^{-4} +46 z^4 a^{-4} -15 z^2 a^{-4} +2 a^{-4} z^{-2} -2 a^{-4} +5 z^9 a^{-3} -15 z^7 a^{-3} +10 z^5 a^{-3} +z^3 a^{-3} +2 z a^{-3} -2 a^{-3} z^{-1} +4 z^8 a^{-2} -15 z^6 a^{-2} +17 z^4 a^{-2} -5 z^2 a^{-2} + a^{-2} z^{-2} -2 a^{-2} +z^7 a^{-1} -3 z^5 a^{-1} +2 z^3 a^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345678χ
21           11
19          3 -3
17         61 5
15        83  -5
13       106   4
11      1210    -2
9     98     1
7    712      5
5   69       -3
3  39        6
1 14         -3
-1 3          3
-31           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=4 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{10}
r=5 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a438.gif

L11a438

L11a440.gif

L11a440