L11a448

From Knot Atlas
Jump to: navigation, search

L11a447.gif

L11a447

L11a449.gif

L11a449

Contents

L11a448.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a448 at Knotilus!


Link Presentations

[edit Notes on L11a448's Link Presentations]

Planar diagram presentation X6172 X14,4,15,3 X8,18,9,17 X16,8,17,7 X18,10,19,9 X12,14,5,13 X22,20,13,19 X20,11,21,12 X10,21,11,22 X2536 X4,16,1,15
Gauss code {1, -10, 2, -11}, {10, -1, 4, -3, 5, -9, 8, -6}, {6, -2, 11, -4, 3, -5, 7, -8, 9, -7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a448 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(3)^3 t(2)^3-t(3)^3 t(2)^3-t(1) t(3)^2 t(2)^3+2 t(3)^2 t(2)^3-t(3) t(2)^3-2 t(1) t(3)^3 t(2)^2+t(3)^3 t(2)^2+2 t(1) t(3)^2 t(2)^2-2 t(3)^2 t(2)^2-t(1) t(3) t(2)^2+2 t(3) t(2)^2-t(2)^2+t(1) t(3)^3 t(2)-2 t(1) t(3)^2 t(2)+t(3)^2 t(2)-t(1) t(2)+2 t(1) t(3) t(2)-2 t(3) t(2)+2 t(2)+t(1) t(3)^2+t(1)-2 t(1) t(3)+t(3)-1}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial -q^9+3 q^8-5 q^7+7 q^6-9 q^5+11 q^4-9 q^3+9 q^2+ q^{-2} -6 q-2 q^{-1} +5 (db)
Signature 4 (db)
HOMFLY-PT polynomial -z^6 a^{-6} -4 z^4 a^{-6} -4 z^2 a^{-6} -2 a^{-6} +z^8 a^{-4} +6 z^6 a^{-4} +13 z^4 a^{-4} +14 z^2 a^{-4} + a^{-4} z^{-2} +7 a^{-4} -2 z^6 a^{-2} -10 z^4 a^{-2} -15 z^2 a^{-2} -2 a^{-2} z^{-2} -9 a^{-2} +z^4+4 z^2+ z^{-2} +4 (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +6 z^9 a^{-3} +4 z^9 a^{-5} +z^8 a^{-2} +6 z^8 a^{-4} +6 z^8 a^{-6} +z^8-10 z^7 a^{-1} -25 z^7 a^{-3} -9 z^7 a^{-5} +6 z^7 a^{-7} -25 z^6 a^{-2} -39 z^6 a^{-4} -14 z^6 a^{-6} +6 z^6 a^{-8} -6 z^6+14 z^5 a^{-1} +24 z^5 a^{-3} -3 z^5 a^{-5} -8 z^5 a^{-7} +5 z^5 a^{-9} +54 z^4 a^{-2} +56 z^4 a^{-4} +5 z^4 a^{-6} -7 z^4 a^{-8} +3 z^4 a^{-10} +13 z^4-3 z^3 a^{-1} +4 z^3 a^{-3} +9 z^3 a^{-5} -3 z^3 a^{-7} -4 z^3 a^{-9} +z^3 a^{-11} -41 z^2 a^{-2} -31 z^2 a^{-4} +2 z^2 a^{-8} -z^2 a^{-10} -13 z^2-5 z a^{-1} -8 z a^{-3} -3 z a^{-5} +z a^{-7} +z a^{-9} +13 a^{-2} +9 a^{-4} - a^{-8} +6+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         31 -2
13        42  2
11       64   -2
9      53    2
7     46     2
5    55      0
3   47       3
1  12        -1
-1 14         3
-3 1          -1
-51           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a447.gif

L11a447

L11a449.gif

L11a449