L11a452

From Knot Atlas
Jump to: navigation, search

L11a451.gif

L11a451

L11a453.gif

L11a453

Contents

L11a452.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a452 at Knotilus!


Link Presentations

[edit Notes on L11a452's Link Presentations]

Planar diagram presentation X6172 X14,4,15,3 X22,18,13,17 X16,8,17,7 X12,14,5,13 X8,21,9,22 X20,9,21,10 X18,11,19,12 X10,19,11,20 X2536 X4,16,1,15
Gauss code {1, -10, 2, -11}, {10, -1, 4, -6, 7, -9, 8, -5}, {5, -2, 11, -4, 3, -8, 9, -7, 6, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a452 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(3)^2 t(2)^3-t(3)^2 t(2)^3-t(1) t(3) t(2)^3+2 t(3) t(2)^3-t(2)^3+t(1) t(3)^3 t(2)^2-t(3)^3 t(2)^2-2 t(1) t(3)^2 t(2)^2+2 t(3)^2 t(2)^2-t(1) t(2)^2+2 t(1) t(3) t(2)^2-2 t(3) t(2)^2+2 t(2)^2-2 t(1) t(3)^3 t(2)+t(3)^3 t(2)+2 t(1) t(3)^2 t(2)-2 t(3)^2 t(2)+t(1) t(2)-2 t(1) t(3) t(2)+2 t(3) t(2)-t(2)+t(1) t(3)^3-2 t(1) t(3)^2+t(3)^2+t(1) t(3)-t(3)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}} (db)
Jones polynomial -q^6+3 q^5-6 q^4+9 q^3-10 q^2+12 q-11+10 q^{-1} -6 q^{-2} +5 q^{-3} -2 q^{-4} + q^{-5} (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-4} +a^4 z^2-2 z^2 a^{-4} +a^4 z^{-2} +2 a^4- a^{-4} +z^6 a^{-2} -2 a^2 z^4+3 z^4 a^{-2} -6 a^2 z^2+3 z^2 a^{-2} -2 a^2 z^{-2} -5 a^2+2 a^{-2} +z^6+3 z^4+3 z^2+ z^{-2} +2 (db)
Kauffman polynomial a^2 z^{10}+z^{10}+2 a^3 z^9+6 a z^9+4 z^9 a^{-1} +a^4 z^8+a^2 z^8+7 z^8 a^{-2} +7 z^8-10 a^3 z^7-24 a z^7-5 z^7 a^{-1} +9 z^7 a^{-3} -6 a^4 z^6-24 a^2 z^6-13 z^6 a^{-2} +9 z^6 a^{-4} -40 z^6+14 a^3 z^5+24 a z^5-12 z^5 a^{-1} -16 z^5 a^{-3} +6 z^5 a^{-5} +13 a^4 z^4+52 a^2 z^4-14 z^4 a^{-4} +3 z^4 a^{-6} +56 z^4-2 a^3 z^3+a z^3+12 z^3 a^{-1} +4 z^3 a^{-3} -4 z^3 a^{-5} +z^3 a^{-7} -13 a^4 z^2-39 a^2 z^2+z^2 a^{-2} +7 z^2 a^{-4} -32 z^2-5 a^3 z-8 a z-3 z a^{-1} +z a^{-3} +z a^{-5} +6 a^4+13 a^2- a^{-4} +9+2 a^3 z^{-1} +2 a z^{-1} -a^4 z^{-2} -2 a^2 z^{-2} - z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
13           1-1
11          2 2
9         41 -3
7        52  3
5       54   -1
3      75    2
1     78     1
-1    34      -1
-3   37       4
-5  23        -1
-7 14         3
-9 1          -1
-111           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a451.gif

L11a451

L11a453.gif

L11a453