L11a492

From Knot Atlas
Jump to: navigation, search

L11a491.gif

L11a491

L11a493.gif

L11a493

Contents

L11a492.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a492 at Knotilus!


Link Presentations

[edit Notes on L11a492's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X22,16,19,15 X20,9,21,10 X8,19,9,20 X4,17,1,18 X12,6,13,5 X10,4,11,3 X18,12,5,11 X16,22,17,21 X2,14,3,13
Gauss code {1, -11, 8, -6}, {5, -4, 10, -3}, {7, -1, 2, -5, 4, -8, 9, -7, 11, -2, 3, -10, 6, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a492 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1) \left(w^2-w+1\right)^2}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial q^6-4 q^5+9 q^4-15 q^3+20 q^2-22 q+25-19 q^{-1} +15 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} (db)
Signature 0 (db)
HOMFLY-PT polynomial z^4 a^{-4} +2 z^2 a^{-4} + a^{-4} -a^2 z^6-2 z^6 a^{-2} -3 a^2 z^4-7 z^4 a^{-2} -3 a^2 z^2-8 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -a^2-3 a^{-2} +z^8+5 z^6+10 z^4+9 z^2-2 z^{-2} +3 (db)
Kauffman polynomial 2 z^{10} a^{-2} +2 z^{10}+8 a z^9+14 z^9 a^{-1} +6 z^9 a^{-3} +11 a^2 z^8+16 z^8 a^{-2} +7 z^8 a^{-4} +20 z^8+8 a^3 z^7-8 a z^7-24 z^7 a^{-1} -4 z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-23 a^2 z^6-55 z^6 a^{-2} -15 z^6 a^{-4} +z^6 a^{-6} -66 z^6+a^5 z^5-12 a^3 z^5-5 a z^5-17 z^5 a^{-3} -9 z^5 a^{-5} -5 a^4 z^4+24 a^2 z^4+60 z^4 a^{-2} +9 z^4 a^{-4} -2 z^4 a^{-6} +78 z^4-a^5 z^3+4 a^3 z^3+13 a z^3+21 z^3 a^{-1} +19 z^3 a^{-3} +6 z^3 a^{-5} -13 a^2 z^2-30 z^2 a^{-2} -6 z^2 a^{-4} +z^2 a^{-6} -36 z^2-a^3 z-5 a z-9 z a^{-1} -7 z a^{-3} -2 z a^{-5} +2 a^2+6 a^{-2} +2 a^{-4} +7-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         61 5
7        93  -6
5       116   5
3      119    -2
1     1411     3
-1    915      6
-3   610       -4
-5  39        6
-7 16         -5
-9 3          3
-111           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{15}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{14}
r=1 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} {\mathbb Z}^{11}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a491.gif

L11a491

L11a493.gif

L11a493