L11a496

From Knot Atlas
Jump to: navigation, search

L11a495.gif

L11a495

L11a497.gif

L11a497

Contents

L11a496.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a496 at Knotilus!


Link Presentations

[edit Notes on L11a496's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,8,15,7 X16,10,17,9 X8,16,9,15 X22,17,19,18 X20,12,21,11 X10,20,11,19 X18,21,5,22 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {8, -7, 9, -6}, {10, -1, 3, -5, 4, -8, 7, -2, 11, -3, 5, -4, 6, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a496 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(3)^4-t(3)^3+t(3)^2-t(3)+1\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} (db)
Jones polynomial -q^9+3 q^8-6 q^7+8 q^6-11 q^5+13 q^4-11 q^3+11 q^2-7 q+6-2 q^{-1} + q^{-2} (db)
Signature 4 (db)
HOMFLY-PT polynomial z^8 a^{-4} -2 z^6 a^{-2} +6 z^6 a^{-4} -z^6 a^{-6} -10 z^4 a^{-2} +14 z^4 a^{-4} -4 z^4 a^{-6} +z^4-17 z^2 a^{-2} +18 z^2 a^{-4} -5 z^2 a^{-6} +4 z^2-14 a^{-2} +13 a^{-4} -4 a^{-6} +5-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} (db)
Kauffman polynomial z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +7 z^9 a^{-3} +5 z^9 a^{-5} +3 z^8 a^{-2} +11 z^8 a^{-4} +9 z^8 a^{-6} +z^8-9 z^7 a^{-1} -25 z^7 a^{-3} -7 z^7 a^{-5} +9 z^7 a^{-7} -34 z^6 a^{-2} -60 z^6 a^{-4} -24 z^6 a^{-6} +8 z^6 a^{-8} -6 z^6+10 z^5 a^{-1} +10 z^5 a^{-3} -22 z^5 a^{-5} -16 z^5 a^{-7} +6 z^5 a^{-9} +70 z^4 a^{-2} +88 z^4 a^{-4} +19 z^4 a^{-6} -10 z^4 a^{-8} +3 z^4 a^{-10} +14 z^4+4 z^3 a^{-1} +34 z^3 a^{-3} +41 z^3 a^{-5} +5 z^3 a^{-7} -5 z^3 a^{-9} +z^3 a^{-11} -57 z^2 a^{-2} -57 z^2 a^{-4} -14 z^2 a^{-6} +2 z^2 a^{-8} -16 z^2-12 z a^{-1} -31 z a^{-3} -25 z a^{-5} -4 z a^{-7} +2 z a^{-9} +23 a^{-2} +22 a^{-4} +7 a^{-6} +9+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
19           1-1
17          2 2
15         41 -3
13        42  2
11       74   -3
9      64    2
7     57     2
5    66      0
3   59       4
1  12        -1
-1 15         4
-3 1          -1
-51           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a495.gif

L11a495

L11a497.gif

L11a497