L11a499

From Knot Atlas
Jump to: navigation, search

L11a498.gif

L11a498

L11a500.gif

L11a500

Contents

L11a499.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a499 at Knotilus!


Link Presentations

[edit Notes on L11a499's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X16,8,17,7 X22,17,19,18 X20,12,21,11 X10,20,11,19 X18,21,5,22 X14,10,15,9 X8,16,9,15 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {6, -5, 7, -4}, {10, -1, 3, -9, 8, -6, 5, -2, 11, -8, 9, -3, 4, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a499 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(2 t(3)^2-3 t(3)+2\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial -q^8+3 q^7-7 q^6+12 q^5-16 q^4+19 q^3-17 q^2+16 q-11+7 q^{-1} -2 q^{-2} + q^{-3} (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +z^6 a^{-4} +z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2-z^2 a^{-2} +6 z^2 a^{-4} -2 z^2 a^{-6} -4 z^2+2 a^2+4 a^{-4} -2 a^{-6} -4+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} (db)
Kauffman polynomial z^5 a^{-9} -2 z^3 a^{-9} +3 z^6 a^{-8} -5 z^4 a^{-8} +6 z^7 a^{-7} -13 z^5 a^{-7} +11 z^3 a^{-7} -4 z a^{-7} +8 z^8 a^{-6} -21 z^6 a^{-6} +27 z^4 a^{-6} -14 z^2 a^{-6} +4 a^{-6} +5 z^9 a^{-5} -4 z^7 a^{-5} -9 z^5 a^{-5} +21 z^3 a^{-5} -8 z a^{-5} +z^{10} a^{-4} +14 z^8 a^{-4} -46 z^6 a^{-4} +62 z^4 a^{-4} -36 z^2 a^{-4} +8 a^{-4} +8 z^9 a^{-3} -14 z^7 a^{-3} +9 z^5 a^{-3} -3 z^3 a^{-3} +z^{10} a^{-2} +9 z^8 a^{-2} +a^2 z^6-26 z^6 a^{-2} -4 a^2 z^4+27 z^4 a^{-2} +6 a^2 z^2-16 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -4 a^2+3 z^9 a^{-1} +2 a z^7-2 z^7 a^{-1} -4 a z^5-11 z^3 a^{-1} +4 a z+8 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +3 z^8-3 z^6-7 z^4+12 z^2+2 z^{-2} -7 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          2 2
13         51 -4
11        72  5
9       95   -4
7      107    3
5     79     2
3    910      -1
1   611       5
-1  15        -4
-3 16         5
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a498.gif

L11a498

L11a500.gif

L11a500