L11a505

From Knot Atlas
Jump to: navigation, search

L11a504.gif

L11a504

L11a506.gif

L11a506

Contents

L11a505.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a505 at Knotilus!


Link Presentations

[edit Notes on L11a505's Link Presentations]

Planar diagram presentation X8192 X16,8,17,7 X10,4,11,3 X2,18,3,17 X18,9,19,10 X20,12,21,11 X14,6,15,5 X22,15,13,16 X6,14,1,13 X4,19,5,20 X12,22,7,21
Gauss code {1, -4, 3, -10, 7, -9}, {2, -1, 5, -3, 6, -11}, {9, -7, 8, -2, 4, -5, 10, -6, 11, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a505 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(w-1) \left(u^2 v^2 w^2-2 u^2 v^2 w-u^2 v w^2+3 u^2 v w-u^2 v-u^2 w+u^2-2 u v^2 w^2+3 u v^2 w+2 u v w^2-7 u v w+2 u v+3 u w-2 u+v^2 w^2-v^2 w-v w^2+3 v w-v-2 w+1\right)}{u v w^{3/2}} (db)
Jones polynomial -q^8+4 q^7-9 q^6+17 q^5-22 q^4+27 q^3-26 q^2+24 q-17+11 q^{-1} -5 q^{-2} + q^{-3} (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-6} -2 z^2 a^{-6} + a^{-6} z^{-2} +2 z^6 a^{-4} +6 z^4 a^{-4} +4 z^2 a^{-4} -2 a^{-4} z^{-2} -2 a^{-4} -z^8 a^{-2} -4 z^6 a^{-2} -5 z^4 a^{-2} -z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} +z^6+2 z^4 (db)
Kauffman polynomial 3 z^{10} a^{-2} +3 z^{10} a^{-4} +9 z^9 a^{-1} +18 z^9 a^{-3} +9 z^9 a^{-5} +18 z^8 a^{-2} +19 z^8 a^{-4} +11 z^8 a^{-6} +10 z^8+5 a z^7-11 z^7 a^{-1} -30 z^7 a^{-3} -6 z^7 a^{-5} +8 z^7 a^{-7} +a^2 z^6-57 z^6 a^{-2} -54 z^6 a^{-4} -16 z^6 a^{-6} +4 z^6 a^{-8} -22 z^6-9 a z^5-8 z^5 a^{-1} +6 z^5 a^{-3} -6 z^5 a^{-5} -10 z^5 a^{-7} +z^5 a^{-9} -a^2 z^4+46 z^4 a^{-2} +48 z^4 a^{-4} +11 z^4 a^{-6} -5 z^4 a^{-8} +13 z^4+3 a z^3+8 z^3 a^{-1} +5 z^3 a^{-3} +5 z^3 a^{-5} +4 z^3 a^{-7} -z^3 a^{-9} -11 z^2 a^{-2} -14 z^2 a^{-4} -3 z^2 a^{-6} +2 z^2 a^{-8} -2 z^2+2 z a^{-3} +2 z a^{-5} -2 a^{-2} -3 a^{-4} -2 a^{-6} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          3 3
13         61 -5
11        113  8
9       127   -5
7      1510    5
5     1314     1
3    1113      -2
1   714       7
-1  410        -6
-3 17         6
-5 4          -4
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=1 {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=2 {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{15}
r=3 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{12}
r=4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{11}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a504.gif

L11a504

L11a506.gif

L11a506