L11a515

From Knot Atlas
Jump to: navigation, search

L11a514.gif

L11a514

L11a516.gif

L11a516

Contents

L11a515.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a515 at Knotilus!


Link Presentations

[edit Notes on L11a515's Link Presentations]

Planar diagram presentation X8192 X14,4,15,3 X20,11,21,12 X18,10,19,9 X22,19,13,20 X10,14,11,13 X12,21,7,22 X16,6,17,5 X2738 X4,16,5,15 X6,18,1,17
Gauss code {1, -9, 2, -10, 8, -11}, {9, -1, 4, -6, 3, -7}, {6, -2, 10, -8, 11, -4, 5, -3, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a515 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^2 w^3-u^2 v^2 w^2-2 u^2 v w^3+4 u^2 v w^2-u^2 v w+u^2 w^3-2 u^2 w^2+u^2 w-u v^2 w^3+2 u v^2 w^2-u v^2 w+u v w^3-4 u v w^2+4 u v w-u v+u w^2-2 u w+u-v^2 w^2+2 v^2 w-v^2+v w^2-4 v w+2 v+w-1}{u v w^{3/2}} (db)
Jones polynomial q^7-3 q^6+6 q^5-9 q^4- q^{-4} +13 q^3+3 q^{-3} -13 q^2-5 q^{-2} +14 q+9 q^{-1} -11 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-4} +4 z^4 a^{-4} +5 z^2 a^{-4} + a^{-4} z^{-2} +3 a^{-4} -z^8 a^{-2} -6 z^6 a^{-2} -a^2 z^4-14 z^4 a^{-2} -3 a^2 z^2-16 z^2 a^{-2} -2 a^{-2} z^{-2} -a^2-8 a^{-2} +2 z^6+9 z^4+12 z^2+ z^{-2} +6 (db)
Kauffman polynomial z^4 a^{-8} -z^2 a^{-8} +3 z^5 a^{-7} -3 z^3 a^{-7} +5 z^6 a^{-6} -6 z^4 a^{-6} +3 z^2 a^{-6} - a^{-6} +6 z^7 a^{-5} -8 z^5 a^{-5} +4 z^3 a^{-5} +6 z^8 a^{-4} -11 z^6 a^{-4} +10 z^4 a^{-4} -6 z^2 a^{-4} - a^{-4} z^{-2} +4 a^{-4} +4 z^9 a^{-3} +a^3 z^7-5 z^7 a^{-3} -4 a^3 z^5-3 z^5 a^{-3} +4 a^3 z^3+8 z^3 a^{-3} -a^3 z-6 z a^{-3} +2 a^{-3} z^{-1} +z^{10} a^{-2} +3 a^2 z^8+9 z^8 a^{-2} -13 a^2 z^6-40 z^6 a^{-2} +17 a^2 z^4+56 z^4 a^{-2} -9 a^2 z^2-37 z^2 a^{-2} -2 a^{-2} z^{-2} +2 a^2+12 a^{-2} +3 a z^9+7 z^9 a^{-1} -9 a z^7-21 z^7 a^{-1} +2 a z^5+14 z^5 a^{-1} +7 a z^3+4 z^3 a^{-1} -3 a z-8 z a^{-1} +2 a^{-1} z^{-1} +z^{10}+6 z^8-37 z^6+56 z^4-36 z^2- z^{-2} +10 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          2 -2
11         41 3
9        63  -3
7       73   4
5      77    0
3     76     1
1    58      3
-1   46       -2
-3  26        4
-5 13         -2
-7 2          2
-91           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a514.gif

L11a514

L11a516.gif

L11a516