L11a52

From Knot Atlas
Jump to: navigation, search

L11a51.gif

L11a51

L11a53.gif

L11a53

Contents

L11a52.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a52 at Knotilus!


Link Presentations

[edit Notes on L11a52's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X14,6,15,5 X10,4,11,3 X20,12,21,11 X22,14,5,13 X12,22,13,21 X16,9,17,10 X2,16,3,15 X8,17,9,18
Gauss code {1, -10, 5, -3}, {4, -1, 2, -11, 9, -5, 6, -8, 7, -4, 10, -9, 11, -2, 3, -6, 8, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a52 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 (t(1)-1) (t(2)-1) \left(t(2)^4-t(2)^3+t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -q^{15/2}+3 q^{13/2}-6 q^{11/2}+9 q^{9/2}-11 q^{7/2}+12 q^{5/2}-12 q^{3/2}+10 \sqrt{q}-\frac{8}{\sqrt{q}}+\frac{4}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{1}{q^{7/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^5 a^{-5} -3 z^3 a^{-5} -2 z a^{-5} - a^{-5} z^{-1} +z^7 a^{-3} +4 z^5 a^{-3} +5 z^3 a^{-3} +5 z a^{-3} +3 a^{-3} z^{-1} +z^7 a^{-1} -a z^5+4 z^5 a^{-1} -3 a z^3+3 z^3 a^{-1} -3 z a^{-1} +2 a z^{-1} -4 a^{-1} z^{-1} (db)
Kauffman polynomial z^3 a^{-9} +3 z^4 a^{-8} +6 z^5 a^{-7} -4 z^3 a^{-7} +z a^{-7} +9 z^6 a^{-6} -13 z^4 a^{-6} +5 z^2 a^{-6} - a^{-6} +10 z^7 a^{-5} -20 z^5 a^{-5} +9 z^3 a^{-5} -2 z a^{-5} + a^{-5} z^{-1} +8 z^8 a^{-4} -16 z^6 a^{-4} -z^4 a^{-4} +8 z^2 a^{-4} -3 a^{-4} +5 z^9 a^{-3} -9 z^7 a^{-3} -9 z^5 a^{-3} +16 z^3 a^{-3} -9 z a^{-3} +3 a^{-3} z^{-1} +2 z^{10} a^{-2} +a^2 z^8-5 a^2 z^6-18 z^6 a^{-2} +7 a^2 z^4+17 z^4 a^{-2} -2 a^2 z^2+2 z^2 a^{-2} -3 a^{-2} +3 a z^9+8 z^9 a^{-1} -17 a z^7-36 z^7 a^{-1} +31 a z^5+48 z^5 a^{-1} -18 a z^3-16 z^3 a^{-1} -a z-7 z a^{-1} +2 a z^{-1} +4 a^{-1} z^{-1} +2 z^{10}-7 z^8+2 z^6+9 z^4-3 z^2-2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123456χ
16           11
14          2 -2
12         41 3
10        52  -3
8       64   2
6      65    -1
4     66     0
2    68      2
0   24       -2
-2  26        4
-4 12         -1
-6 2          2
-81           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a51.gif

L11a51

L11a53.gif

L11a53