L11a542

From Knot Atlas
Jump to: navigation, search

L11a541.gif

L11a541

L11a543.gif

L11a543

Contents

L11a542.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a542 at Knotilus!


Link Presentations

[edit Notes on L11a542's Link Presentations]

Planar diagram presentation X6172 X12,6,13,5 X8493 X2,16,3,15 X16,7,17,8 X22,20,15,19 X14,22,11,21 X20,14,21,13 X18,10,19,9 X10,12,5,11 X4,17,1,18
Gauss code {1, -4, 3, -11}, {10, -2, 8, -7}, {2, -1, 5, -3, 9, -10}, {4, -5, 11, -9, 6, -8, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a542 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (w-1) (x-1) (2 v w x+v (-w)-v x+v-w x+w+x-2)}{\sqrt{u} \sqrt{v} w x} (db)
Jones polynomial 25 q^{9/2}-27 q^{7/2}+20 q^{5/2}-17 q^{3/2}+\frac{1}{q^{3/2}}-q^{19/2}+5 q^{17/2}-11 q^{15/2}+17 q^{13/2}-24 q^{11/2}+8 \sqrt{q}-\frac{4}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-3} +z^7 a^{-5} -z^5 a^{-1} +3 z^5 a^{-3} +2 z^5 a^{-5} -z^5 a^{-7} -2 z^3 a^{-1} +4 z^3 a^{-3} -z^3 a^{-5} -z^3 a^{-7} +2 z a^{-3} -3 z a^{-5} +z a^{-7} +2 a^{-1} z^{-1} -4 a^{-3} z^{-1} +2 a^{-5} z^{-1} + a^{-1} z^{-3} -3 a^{-3} z^{-3} +3 a^{-5} z^{-3} - a^{-7} z^{-3} (db)
Kauffman polynomial z^5 a^{-11} +5 z^6 a^{-10} -4 z^4 a^{-10} +11 z^7 a^{-9} -15 z^5 a^{-9} +6 z^3 a^{-9} +13 z^8 a^{-8} -16 z^6 a^{-8} +3 z^4 a^{-8} +z^2 a^{-8} +8 z^9 a^{-7} +6 z^7 a^{-7} -31 z^5 a^{-7} +20 z^3 a^{-7} + a^{-7} z^{-3} -3 z a^{-7} -2 a^{-7} z^{-1} +2 z^{10} a^{-6} +22 z^8 a^{-6} -43 z^6 a^{-6} +14 z^4 a^{-6} +3 z^2 a^{-6} -3 a^{-6} z^{-2} +4 a^{-6} +13 z^9 a^{-5} -5 z^7 a^{-5} -35 z^5 a^{-5} +36 z^3 a^{-5} +3 a^{-5} z^{-3} -11 z a^{-5} -3 a^{-5} z^{-1} +2 z^{10} a^{-4} +15 z^8 a^{-4} -32 z^6 a^{-4} +9 z^4 a^{-4} +4 z^2 a^{-4} -6 a^{-4} z^{-2} +7 a^{-4} +5 z^9 a^{-3} +4 z^7 a^{-3} -30 z^5 a^{-3} +32 z^3 a^{-3} +3 a^{-3} z^{-3} -11 z a^{-3} -3 a^{-3} z^{-1} +6 z^8 a^{-2} -9 z^6 a^{-2} +3 z^2 a^{-2} -3 a^{-2} z^{-2} +4 a^{-2} +4 z^7 a^{-1} -10 z^5 a^{-1} +10 z^3 a^{-1} + a^{-1} z^{-3} -3 z a^{-1} -2 a^{-1} z^{-1} +z^6-2 z^4+z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345678χ
20           11
18          4 -4
16         71 6
14        104  -6
12       147   7
10      1312    -1
8     1412     2
6    1017      7
4   710       -3
2  312        9
0 15         -4
-2 3          3
-41           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=2 {\mathbb Z}^{17}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{14}
r=3 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{13} {\mathbb Z}^{13}
r=4 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{12} {\mathbb Z}^{14}
r=5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=7 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=8 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a541.gif

L11a541

L11a543.gif

L11a543