L11a71

From Knot Atlas
Jump to: navigation, search

L11a70.gif

L11a70

L11a72.gif

L11a72

Contents

L11a71.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a71 at Knotilus!


Link Presentations

[edit Notes on L11a71's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,8,17,7 X18,10,19,9 X8,18,9,17 X22,20,5,19 X20,14,21,13 X14,22,15,21 X10,16,11,15 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, -5, 4, -9, 11, -2, 7, -8, 9, -3, 5, -4, 6, -7, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a71 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^5-4 u v^4+7 u v^3-8 u v^2+6 u v-3 u-3 v^5+6 v^4-8 v^3+7 v^2-4 v+1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial 17 q^{9/2}-19 q^{7/2}+18 q^{5/2}-\frac{1}{q^{5/2}}-15 q^{3/2}+\frac{2}{q^{3/2}}+q^{17/2}-4 q^{15/2}+9 q^{13/2}-13 q^{11/2}+10 \sqrt{q}-\frac{7}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^3 a^{-7} +z a^{-7} -2 z^5 a^{-5} -4 z^3 a^{-5} + a^{-5} z^{-1} +z^7 a^{-3} +3 z^5 a^{-3} +2 z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-6 z^3 a^{-1} +3 a z-5 z a^{-1} +2 a z^{-1} -2 a^{-1} z^{-1} (db)
Kauffman polynomial z^4 a^{-10} +4 z^5 a^{-9} -z^3 a^{-9} +9 z^6 a^{-8} -9 z^4 a^{-8} +4 z^2 a^{-8} - a^{-8} +12 z^7 a^{-7} -16 z^5 a^{-7} +8 z^3 a^{-7} -2 z a^{-7} +10 z^8 a^{-6} -9 z^6 a^{-6} -5 z^4 a^{-6} +3 z^2 a^{-6} +5 z^9 a^{-5} +7 z^7 a^{-5} -32 z^5 a^{-5} +20 z^3 a^{-5} -2 z a^{-5} - a^{-5} z^{-1} +z^{10} a^{-4} +16 z^8 a^{-4} -46 z^6 a^{-4} +38 z^4 a^{-4} -15 z^2 a^{-4} +3 a^{-4} +8 z^9 a^{-3} -14 z^7 a^{-3} -3 z^5 a^{-3} +5 z^3 a^{-3} +3 z a^{-3} - a^{-3} z^{-1} +z^{10} a^{-2} +8 z^8 a^{-2} -34 z^6 a^{-2} +36 z^4 a^{-2} -10 z^2 a^{-2} +3 z^9 a^{-1} +a z^7-8 z^7 a^{-1} -5 a z^5+4 z^5 a^{-1} +9 a z^3+3 z^3 a^{-1} -7 a z-4 z a^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} +2 z^8-6 z^6+3 z^4+4 z^2-3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          3 3
14         61 -5
12        73  4
10       106   -4
8      97    2
6     910     1
4    69      -3
2   510       5
0  25        -3
-2  5         5
-412          -1
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=2 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{10}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a70.gif

L11a70

L11a72.gif

L11a72