From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a77 at Knotilus!

Link Presentations

[edit Notes on L11a77's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,12,15,11 X22,15,5,16 X16,7,17,8 X20,17,21,18 X18,10,19,9 X8,20,9,19 X10,21,11,22 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 5, -8, 7, -9, 3, -2, 11, -3, 4, -5, 6, -7, 8, -6, 9, -4}
A Braid Representative
A Morse Link Presentation L11a77 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(v^2-3 v+1\right) \left(v^2-v+1\right)}{\sqrt{u} v^{5/2}} (db)
Jones polynomial q^{9/2}-4 q^{7/2}+8 q^{5/2}-13 q^{3/2}+16 \sqrt{q}-\frac{20}{\sqrt{q}}+\frac{19}{q^{3/2}}-\frac{16}{q^{5/2}}+\frac{12}{q^{7/2}}-\frac{7}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^3+2 a^5 z+a^5 z^{-1} -2 a^3 z^5-6 a^3 z^3+z^3 a^{-3} -7 a^3 z+z a^{-3} -3 a^3 z^{-1} +a z^7+4 a z^5-2 z^5 a^{-1} +8 a z^3-5 z^3 a^{-1} +8 a z-4 z a^{-1} +4 a z^{-1} -2 a^{-1} z^{-1} (db)
Kauffman polynomial -a^2 z^{10}-z^{10}-3 a^3 z^9-7 a z^9-4 z^9 a^{-1} -5 a^4 z^8-11 a^2 z^8-6 z^8 a^{-2} -12 z^8-5 a^5 z^7-8 a^3 z^7-z^7 a^{-1} -4 z^7 a^{-3} -3 a^6 z^6+2 a^4 z^6+20 a^2 z^6+13 z^6 a^{-2} -z^6 a^{-4} +29 z^6-a^7 z^5+7 a^5 z^5+25 a^3 z^5+29 a z^5+22 z^5 a^{-1} +10 z^5 a^{-3} +5 a^6 z^4+6 a^4 z^4-7 a^2 z^4-5 z^4 a^{-2} +2 z^4 a^{-4} -15 z^4+2 a^7 z^3-4 a^5 z^3-26 a^3 z^3-36 a z^3-23 z^3 a^{-1} -7 z^3 a^{-3} -3 a^6 z^2-7 a^4 z^2-5 a^2 z^2-z^2 a^{-2} -z^2 a^{-4} -z^2-a^7 z+2 a^5 z+13 a^3 z+17 a z+9 z a^{-1} +2 z a^{-3} +a^6+3 a^4+3 a^2+2-a^5 z^{-1} -3 a^3 z^{-1} -4 a z^{-1} -2 a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
10           1-1
8          3 3
6         51 -4
4        83  5
2       85   -3
0      128    4
-2     910     1
-4    710      -3
-6   59       4
-8  27        -5
-10 15         4
-12 2          -2
-141           1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-1 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} {\mathbb Z}^{9}
r=0 {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{10} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.