L11n129

From Knot Atlas
Jump to: navigation, search

L11n128.gif

L11n128

L11n130.gif

L11n130

Contents

L11n129.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n129 at Knotilus!


Link Presentations

[edit Notes on L11n129's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X22,10,7,9 X2738 X4,15,5,16 X5,13,6,12 X16,12,17,11 X17,6,18,1 X19,14,20,15 X13,20,14,21 X21,19,22,18
Gauss code {1, -4, 2, -5, -6, 8}, {4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 11, -9, 10, -11, -3}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n129 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^2-2 u^2 v+u^2-3 u v^2+7 u v-3 u+v^2-2 v+1}{u v} (db)
Jones polynomial q^{9/2}-\frac{1}{q^{9/2}}-3 q^{7/2}+\frac{2}{q^{7/2}}+4 q^{5/2}-\frac{5}{q^{5/2}}-6 q^{3/2}+\frac{6}{q^{3/2}}+7 \sqrt{q}-\frac{7}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^{-1} +z^3 a^{-3} -3 a^3 z-2 a^3 z^{-1} +z a^{-3} -z^5 a^{-1} +3 a z^3-3 z^3 a^{-1} +5 a z+2 a z^{-1} -4 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -a z^9-z^9 a^{-1} -2 a^2 z^8-3 z^8 a^{-2} -5 z^8-a^3 z^7-2 z^7 a^{-1} -3 z^7 a^{-3} +8 a^2 z^6+10 z^6 a^{-2} -z^6 a^{-4} +19 z^6+3 a^3 z^5+10 a z^5+18 z^5 a^{-1} +11 z^5 a^{-3} -2 a^4 z^4-15 a^2 z^4-7 z^4 a^{-2} +3 z^4 a^{-4} -23 z^4-a^5 z^3-9 a^3 z^3-21 a z^3-22 z^3 a^{-1} -9 z^3 a^{-3} +2 a^4 z^2+8 a^2 z^2+2 z^2 a^{-2} -z^2 a^{-4} +9 z^2+2 a^5 z+8 a^3 z+12 a z+8 z a^{-1} +2 z a^{-3} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        2 2
6       21 -1
4      42  2
2     32   -1
0    44    0
-2   34     1
-4  23      -1
-6 14       3
-8 1        -1
-101         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n128.gif

L11n128

L11n130.gif

L11n130