From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n154 at Knotilus!

Link Presentations

[edit Notes on L11n154's Link Presentations]

Planar diagram presentation X8192 X2,9,3,10 X10,3,11,4 X7,16,8,17 X13,20,14,21 X15,22,16,7 X19,1,20,6 X18,11,19,12 X5,12,6,13 X21,14,22,15 X4,18,5,17
Gauss code {1, -2, 3, -11, -9, 7}, {-4, -1, 2, -3, 8, 9, -5, 10, -6, 4, 11, -8, -7, 5, -10, 6}
A Braid Representative
A Morse Link Presentation L11n154 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^4-u^2 v^3+u^2 v^2-u^2 v-2 u v^4+3 u v^3-3 u v^2+3 u v-2 u-v^3+v^2-v+1}{u v^2} (db)
Jones polynomial -\frac{5}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{2}{q^{5/2}}+\frac{1}{q^{23/2}}-\frac{2}{q^{21/2}}+\frac{4}{q^{19/2}}-\frac{6}{q^{17/2}}+\frac{7}{q^{15/2}}-\frac{7}{q^{13/2}}+\frac{6}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^9 \left(-z^5\right)-4 a^9 z^3-5 a^9 z-2 a^9 z^{-1} +a^7 z^7+6 a^7 z^5+14 a^7 z^3+15 a^7 z+5 a^7 z^{-1} -2 a^5 z^5-9 a^5 z^3-11 a^5 z-3 a^5 z^{-1} (db)
Kauffman polynomial a^{14} z^4-2 a^{14} z^2+2 a^{13} z^5-3 a^{13} z^3+3 a^{12} z^6-6 a^{12} z^4+5 a^{12} z^2-a^{12}+3 a^{11} z^7-7 a^{11} z^5+9 a^{11} z^3-2 a^{11} z+2 a^{10} z^8-4 a^{10} z^6+5 a^{10} z^4+a^9 z^9-2 a^9 z^7+5 a^9 z^5-6 a^9 z^3+5 a^9 z-2 a^9 z^{-1} +3 a^8 z^8-11 a^8 z^6+21 a^8 z^4-20 a^8 z^2+5 a^8+a^7 z^9-5 a^7 z^7+17 a^7 z^5-30 a^7 z^3+20 a^7 z-5 a^7 z^{-1} +a^6 z^8-4 a^6 z^6+9 a^6 z^4-13 a^6 z^2+5 a^6+3 a^5 z^5-12 a^5 z^3+13 a^5 z-3 a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
-4         22
-6        110
-8       41 3
-10      32  -1
-12     43   1
-14    33    0
-16   34     -1
-18  13      2
-20 13       -2
-22 1        1
-241         -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.