L11n176

From Knot Atlas
Jump to: navigation, search

L11n175.gif

L11n175

L11n177.gif

L11n177

Contents

L11n176.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n176 at Knotilus!


Link Presentations

[edit Notes on L11n176's Link Presentations]

Planar diagram presentation X8192 X20,9,21,10 X14,5,15,6 X11,18,12,19 X3,10,4,11 X12,7,13,8 X16,13,17,14 X22,17,7,18 X6,15,1,16 X4,21,5,22 X19,2,20,3
Gauss code {1, 11, -5, -10, 3, -9}, {6, -1, 2, 5, -4, -6, 7, -3, 9, -7, 8, 4, -11, -2, 10, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n176 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u^2 v^4-u^2 v^3-u v^4+u v^3+u v^2+u v-u-v+2}{u v^2} (db)
Jones polynomial \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}-\frac{1}{q^{23/2}}+\frac{2}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{2}{q^{13/2}}-\frac{3}{q^{11/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial a^{13} (-z)+a^{11} z^5+5 a^{11} z^3+4 a^{11} z-a^{11} z^{-1} -a^9 z^7-5 a^9 z^5-5 a^9 z^3+2 a^9 z+3 a^9 z^{-1} -a^7 z^7-6 a^7 z^5-11 a^7 z^3-8 a^7 z-2 a^7 z^{-1} (db)
Kauffman polynomial -z^7 a^{13}+5 z^5 a^{13}-6 z^3 a^{13}+z a^{13}-2 z^8 a^{12}+11 z^6 a^{12}-17 z^4 a^{12}+8 z^2 a^{12}+a^{12}-z^9 a^{11}+4 z^7 a^{11}-2 z^5 a^{11}-z^3 a^{11}-a^{11} z^{-1} -3 z^8 a^{10}+15 z^6 a^{10}-18 z^4 a^{10}+3 z^2 a^{10}+3 a^{10}-z^9 a^9+4 z^7 a^9-z^5 a^9-6 z^3 a^9+7 z a^9-3 a^9 z^{-1} -z^8 a^8+4 z^6 a^8-z^4 a^8-5 z^2 a^8+3 a^8-z^7 a^7+6 z^5 a^7-11 z^3 a^7+8 z a^7-2 a^7 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-6        11
-8       110
-10      2  2
-12    111  1
-14    32   1
-16  121    0
-18  23     -1
-20 11      0
-22 1       -1
-241        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6 i=-4
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n175.gif

L11n175

L11n177.gif

L11n177