From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n209 at Knotilus!

Link Presentations

[edit Notes on L11n209's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X5,14,6,15 X22,18,9,17 X19,5,20,4 X6,22,7,21 X16,7,17,8 X8,9,1,10 X13,18,14,19 X20,15,21,16
Gauss code {1, -2, 3, 6, -4, -7, 8, -9}, {9, -1, 2, -3, -10, 4, 11, -8, 5, 10, -6, -11, 7, -5}
A Braid Representative
A Morse Link Presentation L11n209 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1) t(2)+1) (t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial \frac{1}{\sqrt{q}}-\frac{3}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{6}{q^{7/2}}+\frac{6}{q^{9/2}}-\frac{6}{q^{11/2}}+\frac{5}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{1}{q^{19/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 z^5+4 a^7 z^3+4 a^7 z-a^5 z^7-6 a^5 z^5-12 a^5 z^3-7 a^5 z+a^5 z^{-1} +a^3 z^5+3 a^3 z^3+a^3 z-a^3 z^{-1} (db)
Kauffman polynomial a^{11} z^5-3 a^{11} z^3+a^{11} z+2 a^{10} z^6-6 a^{10} z^4+3 a^{10} z^2+2 a^9 z^7-5 a^9 z^5+2 a^9 z^3+2 a^8 z^8-7 a^8 z^6+10 a^8 z^4-5 a^8 z^2+a^7 z^9-3 a^7 z^7+5 a^7 z^5-3 a^7 z^3+3 a^7 z+3 a^6 z^8-13 a^6 z^6+24 a^6 z^4-12 a^6 z^2+a^5 z^9-5 a^5 z^7+14 a^5 z^5-15 a^5 z^3+6 a^5 z+a^5 z^{-1} +a^4 z^8-4 a^4 z^6+9 a^4 z^4-6 a^4 z^2-a^4+3 a^3 z^5-7 a^3 z^3+2 a^3 z+a^3 z^{-1} +a^2 z^4-2 a^2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
0         1-1
-2        2 2
-4       22 0
-6      41  3
-8     22   0
-10    44    0
-12   23     1
-14  13      -2
-16 12       1
-18 1        -1
-201         1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-8 {\mathbb Z}
r=-7 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.