L11n226

From Knot Atlas
Jump to: navigation, search

L11n225.gif

L11n225

L11n227.gif

L11n227

Contents

L11n226.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n226 at Knotilus!


Link Presentations

[edit Notes on L11n226's Link Presentations]

Planar diagram presentation X10,1,11,2 X18,11,19,12 X6,9,7,10 X7,21,8,20 X19,1,20,8 X22,15,9,16 X3,12,4,13 X16,6,17,5 X13,4,14,5 X14,21,15,22 X2,18,3,17
Gauss code {1, -11, -7, 9, 8, -3, -4, 5}, {3, -1, 2, 7, -9, -10, 6, -8, 11, -2, -5, 4, 10, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n226 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (u+1)^2 (v-1)}{u^{3/2} \sqrt{v}} (db)
Jones polynomial -\frac{1}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{13/2}}-\sqrt{q} (db)
Signature -2 (db)
HOMFLY-PT polynomial -z a^7-z a^5-a^5 z^{-1} +z^5 a^3+5 z^3 a^3+6 z a^3+3 a^3 z^{-1} -z^3 a-4 z a-2 a z^{-1} (db)
Kauffman polynomial a^8 z^6-5 a^8 z^4+5 a^8 z^2+a^7 z^7-6 a^7 z^5+9 a^7 z^3-2 a^7 z-a^6 z^2+a^6-a^5 z^3+2 a^5 z-a^5 z^{-1} -a^4 z^6+6 a^4 z^4-10 a^4 z^2+3 a^4-a^3 z^7+7 a^3 z^5-15 a^3 z^3+11 a^3 z-3 a^3 z^{-1} +a^2 z^4-4 a^2 z^2+3 a^2+a z^5-5 a z^3+7 a z-2 a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0       1  1
-2      131 1
-4     111  1
-6    121   0
-8   121    0
-10   11     0
-12 111      1
-14          0
-161         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{3} {\mathbb Z}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n225.gif

L11n225

L11n227.gif

L11n227