L11n230

From Knot Atlas
Jump to: navigation, search

L11n229.gif

L11n229

L11n231.gif

L11n231

Contents

L11n230.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n230 at Knotilus!


Link Presentations

[edit Notes on L11n230's Link Presentations]

Planar diagram presentation X10,1,11,2 X11,17,12,16 X5,21,6,20 X3,12,4,13 X7,14,8,15 X13,6,14,7 X17,9,18,22 X21,19,22,18 X8,9,1,10 X19,5,20,4 X15,2,16,3
Gauss code {1, 11, -4, 10, -3, 6, -5, -9}, {9, -1, -2, 4, -6, 5, -11, 2, -7, 8, -10, 3, -8, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n230 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^3 v^2-u^3 v+2 u^2 v^3-4 u^2 v^2+5 u^2 v-2 u^2-2 u v^3+5 u v^2-4 u v+2 u-v^2+v}{u^{3/2} v^{3/2}} (db)
Jones polynomial 2 q^{5/2}-5 q^{3/2}+7 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{10}{q^{3/2}}-\frac{10}{q^{5/2}}+\frac{8}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^3+2 a^5 z+a^5 z^{-1} -a^3 z^5-2 a^3 z^3-2 a^3 z-a^3 z^{-1} -2 a z^5-6 a z^3+2 z^3 a^{-1} -5 a z+3 z a^{-1} (db)
Kauffman polynomial a^7 z^5-3 a^7 z^3+2 a^7 z+2 a^6 z^6-4 a^6 z^4+a^6 z^2+3 a^5 z^7-6 a^5 z^5+5 a^5 z^3-4 a^5 z+a^5 z^{-1} +3 a^4 z^8-6 a^4 z^6+7 a^4 z^4-3 a^4 z^2-a^4+a^3 z^9+4 a^3 z^7-13 a^3 z^5+16 a^3 z^3-7 a^3 z+a^3 z^{-1} +5 a^2 z^8-10 a^2 z^6+11 a^2 z^4+3 z^4 a^{-2} -4 a^2 z^2-4 z^2 a^{-2} +a z^9+2 a z^7+z^7 a^{-1} -3 a z^5+3 z^5 a^{-1} -8 z^3 a^{-1} +2 a z+3 z a^{-1} +2 z^8-2 z^6+3 z^4-4 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
6         2-2
4        3 3
2       42 -2
0      63  3
-2     55   0
-4    55    0
-6   35     2
-8  25      -3
-10 14       3
-12 1        -1
-141         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n229.gif

L11n229

L11n231.gif

L11n231