L11n235

From Knot Atlas
Jump to: navigation, search

L11n234.gif

L11n234

L11n236.gif

L11n236

Contents

L11n235.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n235 at Knotilus!


Link Presentations

[edit Notes on L11n235's Link Presentations]

Planar diagram presentation X10,1,11,2 X5,20,6,21 X14,3,15,4 X4,15,5,16 X19,22,20,9 X16,7,17,8 X18,12,19,11 X12,18,13,17 X2,9,3,10 X8,13,1,14 X21,6,22,7
Gauss code {1, -9, 3, -4, -2, 11, 6, -10}, {9, -1, 7, -8, 10, -3, 4, -6, 8, -7, -5, 2, -11, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n235 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2)^3 t(1)^3-2 t(2)^2 t(1)^3-t(2)^3 t(1)^2+t(2)^2 t(1)^2-t(1)^2-t(2)^3 t(1)+t(2) t(1)-t(1)-2 t(2)+1}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -\frac{3}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{3}{q^{5/2}}+\frac{2}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{2}{q^{11/2}}-\frac{1}{\sqrt{q}} (db)
Signature -5 (db)
HOMFLY-PT polynomial 2 z a^9+a^9 z^{-1} -z^5 a^7-5 z^3 a^7-5 z a^7-a^7 z^{-1} +z^7 a^5+5 z^5 a^5+6 z^3 a^5+2 z a^5-z^5 a^3-4 z^3 a^3-3 z a^3 (db)
Kauffman polynomial -z^5 a^{11}+5 z^3 a^{11}-4 z a^{11}+z^4 a^{10}-z^2 a^{10}+z^5 a^9-2 z^3 a^9+3 z a^9-a^9 z^{-1} -z^8 a^8+5 z^6 a^8-4 z^4 a^8-z^2 a^8+a^8-z^9 a^7+4 z^7 a^7-7 z^3 a^7+5 z a^7-a^7 z^{-1} -3 z^8 a^6+15 z^6 a^6-18 z^4 a^6+5 z^2 a^6-z^9 a^5+3 z^7 a^5+3 z^5 a^5-7 z^3 a^5+z a^5-2 z^8 a^4+10 z^6 a^4-13 z^4 a^4+5 z^2 a^4-z^7 a^3+5 z^5 a^3-7 z^3 a^3+3 z a^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
0          11
-2         1 -1
-4        21 1
-6       22  0
-8     121   0
-10     12    1
-12   132     0
-14    1      1
-16  12       -1
-181          1
-201          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-8 {\mathbb Z} {\mathbb Z}
r=-7
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2} {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n234.gif

L11n234

L11n236.gif

L11n236