L11n247

From Knot Atlas
Jump to: navigation, search

L11n246.gif

L11n246

L11n248.gif

L11n248

Contents

L11n247.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n247 at Knotilus!


Link Presentations

[edit Notes on L11n247's Link Presentations]

Planar diagram presentation X12,1,13,2 X3849 X14,6,15,5 X7,18,8,19 X9,21,10,20 X10,11,1,12 X6,14,7,13 X17,4,18,5 X15,11,16,22 X19,3,20,2 X21,17,22,16
Gauss code {1, 10, -2, 8, 3, -7, -4, 2, -5, -6}, {6, -1, 7, -3, -9, 11, -8, 4, -10, 5, -11, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n247 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) 0 (db)
Jones polynomial q^{9/2}-2 q^{7/2}+q^{5/2}-q^{3/2}-\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}-\frac{2}{q^{7/2}}+\frac{1}{q^{9/2}} (db)
Signature 0 (db)
HOMFLY-PT polynomial -a^3 z^3+z^3 a^{-3} -2 a^3 z+2 z a^{-3} +a z^5-z^5 a^{-1} +5 a z^3-5 z^3 a^{-1} +6 a z-6 z a^{-1} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial a^4 z^6+z^6 a^{-4} -4 a^4 z^4-4 z^4 a^{-4} +2 a^4 z^2+2 z^2 a^{-4} +2 a^3 z^7+2 z^7 a^{-3} -10 a^3 z^5-10 z^5 a^{-3} +11 a^3 z^3+11 z^3 a^{-3} -4 a^3 z-4 z a^{-3} +a^2 z^8+z^8 a^{-2} -5 a^2 z^6-5 z^6 a^{-2} +4 a^2 z^4+4 z^4 a^{-2} +3 a z^7+3 z^7 a^{-1} -19 a z^5-19 z^5 a^{-1} +29 a z^3+29 z^3 a^{-1} -12 a z-12 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +2 z^8-12 z^6+16 z^4-4 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-1012345χ
10          1-1
8         1 1
6       111 1
4      121  0
2     221   1
0    242    0
-2   122     1
-4  121      0
-6 111       1
-8 1         1
-101          -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n246.gif

L11n246

L11n248.gif

L11n248