L11n25

From Knot Atlas
Jump to: navigation, search

L11n24.gif

L11n24

L11n26.gif

L11n26

Contents

L11n25.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n25 at Knotilus!


Link Presentations

[edit Notes on L11n25's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X20,9,21,10 X8493 X18,22,19,21 X11,14,12,15 X5,13,6,12 X13,5,14,22 X10,19,11,20 X2,16,3,15
Gauss code {1, -11, 5, -3}, {-8, -1, 2, -5, 4, -10, -7, 8, -9, 7, 11, -2, 3, -6, 10, -4, 6, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n25 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-2) (v-1) (2 v-1)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial q^{9/2}-4 q^{7/2}+6 q^{5/2}-10 q^{3/2}+12 \sqrt{q}-\frac{12}{\sqrt{q}}+\frac{11}{q^{3/2}}-\frac{9}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{2}{q^{9/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^{-1} +a^3 z^3+z^3 a^{-3} -2 a^3 z-2 a^3 z^{-1} - a^{-3} z^{-1} -a z^5-z^5 a^{-1} -z^3 a^{-1} +2 a z+a z^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial 3 a^5 z^3-3 a^5 z+a^5 z^{-1} +a^4 z^6+z^6 a^{-4} +4 a^4 z^4-2 z^4 a^{-4} -3 a^4 z^2+a^4+4 a^3 z^7+4 z^7 a^{-3} -7 a^3 z^5-12 z^5 a^{-3} +14 a^3 z^3+8 z^3 a^{-3} -11 a^3 z+z a^{-3} +2 a^3 z^{-1} - a^{-3} z^{-1} +5 a^2 z^8+5 z^8 a^{-2} -12 a^2 z^6-14 z^6 a^{-2} +19 a^2 z^4+10 z^4 a^{-2} -13 a^2 z^2-4 z^2 a^{-2} +3 a^2+ a^{-2} +2 a z^9+2 z^9 a^{-1} +4 a z^7+4 z^7 a^{-1} -19 a z^5-24 z^5 a^{-1} +22 a z^3+19 z^3 a^{-1} -10 a z-z a^{-1} +a z^{-1} - a^{-1} z^{-1} +10 z^8-28 z^6+27 z^4-14 z^2+2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        3 3
6       31 -2
4      73  4
2     53   -2
0    77    0
-2   67     1
-4  35      -2
-6 26       4
-8 3        -3
-102         2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n24.gif

L11n24

L11n26.gif

L11n26