L11n250

From Knot Atlas
Jump to: navigation, search

L11n249.gif

L11n249

L11n251.gif

L11n251

Contents

L11n250.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n250 at Knotilus!


Link Presentations

[edit Notes on L11n250's Link Presentations]

Planar diagram presentation X12,1,13,2 X9,19,10,18 X14,6,15,5 X6,12,7,11 X22,15,11,16 X20,8,21,7 X3948 X16,21,17,22 X4,18,5,17 X10,13,1,14 X19,3,20,2
Gauss code {1, 11, -7, -9, 3, -4, 6, 7, -2, -10}, {4, -1, 10, -3, 5, -8, 9, 2, -11, -6, 8, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n250 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^3 v^3-3 u^3 v^2+2 u^3 v-u^2 v^3+4 u^2 v^2-2 u^2 v-2 u v^2+4 u v-u+2 v^2-3 v+1}{u^{3/2} v^{3/2}} (db)
Jones polynomial q^{13/2}-4 q^{11/2}+6 q^{9/2}-8 q^{7/2}+8 q^{5/2}-9 q^{3/2}+7 \sqrt{q}-\frac{5}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{1}{q^{5/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-3} -2 z^5 a^{-1} +5 z^5 a^{-3} -z^5 a^{-5} +a z^3-7 z^3 a^{-1} +9 z^3 a^{-3} -4 z^3 a^{-5} +2 a z-5 z a^{-1} +8 z a^{-3} -4 z a^{-5} +z a^{-7} + a^{-3} z^{-1} - a^{-5} z^{-1} (db)
Kauffman polynomial z^2 a^{-8} +4 z^3 a^{-7} -z a^{-7} +2 z^6 a^{-6} -z^4 a^{-6} +z^2 a^{-6} +5 z^7 a^{-5} -14 z^5 a^{-5} +14 z^3 a^{-5} -6 z a^{-5} + a^{-5} z^{-1} +5 z^8 a^{-4} -15 z^6 a^{-4} +12 z^4 a^{-4} -3 z^2 a^{-4} - a^{-4} +2 z^9 a^{-3} -17 z^5 a^{-3} +18 z^3 a^{-3} -7 z a^{-3} + a^{-3} z^{-1} +8 z^8 a^{-2} -30 z^6 a^{-2} +29 z^4 a^{-2} -8 z^2 a^{-2} +2 z^9 a^{-1} +a z^7-4 z^7 a^{-1} -4 a z^5-7 z^5 a^{-1} +5 a z^3+13 z^3 a^{-1} -2 a z-4 z a^{-1} +3 z^8-13 z^6+16 z^4-5 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
14         1-1
12        3 3
10       42 -2
8      42  2
6     44   0
4    54    1
2   35     2
0  24      -2
-2 13       2
-4 2        -2
-61         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n249.gif

L11n249

L11n251.gif

L11n251