L11n253

From Knot Atlas
Jump to: navigation, search

L11n252.gif

L11n252

L11n254.gif

L11n254

Contents

L11n253.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n253 at Knotilus!


Link Presentations

[edit Notes on L11n253's Link Presentations]

Planar diagram presentation X12,1,13,2 X14,3,15,4 X9,18,10,19 X5,16,6,17 X22,7,11,8 X6,21,7,22 X20,15,21,16 X17,8,18,9 X19,4,20,5 X2,11,3,12 X10,13,1,14
Gauss code {1, -10, 2, 9, -4, -6, 5, 8, -3, -11}, {10, -1, 11, -2, 7, 4, -8, 3, -9, -7, 6, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n253 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^4 \left(-v^3\right)-u^3 v^4+u^3 v^3-u^3 v-u^2 v^2-u v^3+u v-u-v}{u^2 v^2} (db)
Jones polynomial \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}-\frac{1}{q^{25/2}}+\frac{1}{q^{17/2}}-\frac{1}{q^{15/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial -z a^{13}+z^5 a^{11}+6 z^3 a^{11}+7 z a^{11}+a^{11} z^{-1} -z^7 a^9-6 z^5 a^9-10 z^3 a^9-6 z a^9-a^9 z^{-1} -z^7 a^7-6 z^5 a^7-10 z^3 a^7-5 z a^7 (db)
Kauffman polynomial a^{15} z^5-5 a^{15} z^3+5 a^{15} z-a^{14} z^2-2 a^{13} z^3+2 a^{13} z+a^{12} z^8-7 a^{12} z^6+14 a^{12} z^4-10 a^{12} z^2+a^{11} z^9-7 a^{11} z^7+16 a^{11} z^5-18 a^{11} z^3+9 a^{11} z-a^{11} z^{-1} +2 a^{10} z^8-12 a^{10} z^6+19 a^{10} z^4-9 a^{10} z^2+a^{10}+a^9 z^9-6 a^9 z^7+11 a^9 z^5-11 a^9 z^3+7 a^9 z-a^9 z^{-1} +a^8 z^8-5 a^8 z^6+5 a^8 z^4+a^7 z^7-6 a^7 z^5+10 a^7 z^3-5 a^7 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-6          11
-8         110
-10        1  1
-12      111  1
-14     121   0
-16     11    0
-18   122     -1
-20           0
-22  11       0
-241          1
-261          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6 i=-4
r=-10 {\mathbb Z} {\mathbb Z}
r=-9
r=-8 {\mathbb Z}
r=-7 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{2} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n252.gif

L11n252

L11n254.gif

L11n254